SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heller H. Craig) "

Sökning: WFRF:(Heller H. Craig)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Rojas, I., et al. (författare)
  • Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic discoveries of Alzheimer’s disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer’s disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer’s disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer’s disease. © 2021, The Author(s).
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Raizen, David M., et al. (författare)
  • Beyond the symptom : the biology of fatigue
  • 2023
  • Ingår i: Sleep. - : Oxford University Press. - 0161-8105 .- 1550-9109. ; 46:9
  • Tidskriftsartikel (refereegranskat)abstract
    • A workshop titled “Beyond the Symptom: The Biology of Fatigue” was held virtually September 27–28, 2021. It was jointly organized by the Sleep Research Society and the Neurobiology of Fatigue Working Group of the NIH Blueprint Neuroscience Research Program. For access to the presentations and video recordings, see: https://neuroscienceblueprint.nih.gov/about/event/beyond-symptom-biology-fatigue.The goals of this workshop were to bring together clinicians and scientists who use a variety of research approaches to understand fatigue in multiple conditions and to identify key gaps in our understanding of the biology of fatigue. This workshop summary distills key issues discussed in this workshop and provides a list of promising directions for future research on this topic. We do not attempt to provide a comprehensive review of the state of our understanding of fatigue, nor to provide a comprehensive reprise of the many excellent presentations. Rather, our goal is to highlight key advances and to focus on questions and future approaches to answering them.
  •  
6.
  •  
7.
  • Koc-Januchta, Marta, Ph.D. 1977-, et al. (författare)
  • "Connecting concepts helps put main ideas together": cognitive load and usability in learning biology with an AI-enriched textbook
  • 2022
  • Ingår i: International Journal of Educational Technology in Higher Education. - : Springer. - 2365-9440. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Rapid developments in educational technology in higher education are intended to make learning more engaging and effective. At the same time, cognitive load theory stresses limitations of human cognitive architecture and urges educational developers to design learning tools that optimise learners’ mental capacities. In a 2-month study we investigated university students’ learning with an AI-enriched digital biology textbook that integrates a 5000-concept knowledge base and algorithms offering the possibility to ask questions and receive answers. The study aimed to shed more light on differences between three sub-types (intrinsic, germane and extraneous) of cognitive load and their relationship with learning gain, self-regulated learning and usability perception while students interacted with the AI-enriched book during an introductory biology course. We found that students displayed a beneficial learning pattern with germane cognitive load significantly higher than both intrinsic and extraneous loads showing that they were engaged in meaningful learning throughout the study. A significant correlation between germane load and accessing linked suggested questions available in the AI-book indicates that the book may support deep learning. Additionally, results showed that perceived non-optimal design, which deflects cognitive resources away from meaningful processing accompanied lower learning gains. Nevertheless, students reported substantially more favourable than unfavourable opinions of the AI-book. The findings provide new approaches for investigating cognitive load types in relation to learning with emerging digital tools in higher education. The findings also highlight the importance of optimally aligning educational technologies and human cognitive architecture.
  •  
8.
  • Koc-Januchta, Marta, 1977-, et al. (författare)
  • Engaging With Biology by Asking Questions: Investigating Students’ Interaction and Learning With an Artificial Intelligence-Enriched Textbook
  • 2020
  • Ingår i: Journal of educational computing research (Print). - : Sage Publications. - 0735-6331 .- 1541-4140.
  • Tidskriftsartikel (refereegranskat)abstract
    • Applying artificial intelligence (AI) to support science learning is a prominent aspect of the digital education revolution. This study investigates students’ interaction and learning with an AI book, which enables the inputting of questions and receiving of suggested questions to understand biology, in comparison with a traditional E-book. Students (n = 16) in a tertiary biology course engaged with the topics of energy in cells and cell signaling. The AI book group (n = 6) interacted with the AI book first followed by the E-book, while the E-book group (n = 10) did so in reverse. Students responded to pre-/posttests and to cognitive load, motivation, and usability questionnaires; and three students were interviewed. All interactions with the books were automatically logged. Results revealed a learning gain and a similar pattern of feature use across both books. Nevertheless, asking questions with the AI book was associated with higher retention and correlated positively with viewing visual representations more often. Students with a higher intrinsic motivation to know and to experience stimulation perceived book usability more favorably. Interviews revealed that posing and receiving suggested questions was helpful, while ideas for future development included more personalized feedback. Future research shall explore how learning can be benefitted with the AI-enriched book.
  •  
9.
  • Svensson, Patrik, et al. (författare)
  • The symposium
  • 2013
  • Ingår i: Infrastructure, space and media. - Stockholm : Peter Wallenberg Foundation. - 9789198102901 ; , s. 13-14
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy