SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hezel Michael) "

Sökning: WFRF:(Hezel Michael)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carlström, Mattias, et al. (författare)
  • Cross-talk Between Nitrate-Nitrite-NO and NO Synthase Pathways in Control of Vascular NO Homeostasis
  • 2015
  • Ingår i: Antioxidants and Redox Signaling. - : Mary Ann Liebert Inc. - 1523-0864 .- 1557-7716. ; 23:4, s. 295-306
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Inorganic nitrate and nitrite from endogenous and dietary sources have emerged as alternative substrates for nitric oxide (NO) formation in addition to the classic L-arginine NO synthase (NOS)-dependent pathway. Here, we investigated a potential cross-talk between these two pathways in the regulation of vascular function. Results: Long-term dietary supplementation with sodium nitrate (0.1 and 1mmol kg(-1) day(-1)) in rats caused a reversible dose-dependent reduction in phosphorylated endothelial NOS (eNOS) (Ser1177) in aorta and a concomitant increase in phosphorylation at Thr495. Moreover, eNOS-dependent vascular responses were attenuated in vessels harvested from nitrate-treated mice or when nitrite was acutely added to control vessels. The citrulline-to-arginine ratio in plasma, as a measure of eNOS activity, was reduced in nitrate-treated rodents. Telemetry measurements revealed that a low dietary nitrate dose reduced blood pressure, whereas a higher dose was associated with a paradoxical elevation. Finally, plasma cyclic guanosine monophosphate increased in mice that were treated with a low dietary nitrate dose and decreased with a higher dose. Innovation and Conclusions: These results demonstrate the existence of a cross-talk between the nitrate-nitrite-NO pathway and the NOS-dependent pathway in control of vascular NO homeostasis. Antioxid. Redox Signal. 23, 295-306.
  •  
2.
  •  
3.
  • Carlström, Mattias, et al. (författare)
  • Dietary inorganic nitrate reverses features of metabolic syndrome in endothelial nitric oxide synthase-deficient mice
  • 2010
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 107:41, s. 17716-17720
  • Tidskriftsartikel (refereegranskat)abstract
    • The metabolic syndrome is a clustering of risk factors of metabolic origin that increase the risk for cardiovascular disease and type 2 diabetes. A proposed central event in metabolic syndrome is a decrease in the amount of bioavailable nitric oxide (NO) from endothelial NO synthase (eNOS). Recently, an alternative pathway for NO formation in mammals was described where inorganic nitrate, a supposedly inert NO oxidation product and unwanted dietary constituent, is serially reduced to nitrite and then NO and other bioactive nitrogen oxides. Here we show that several features of metabolic syndrome that develop in eNOS-deficient mice can be reversed by dietary supplementation with sodium nitrate, in amounts similar to those derived from eNOS under normal conditions. In humans, this dose corresponds to a rich intake of vegetables, the dominant dietary nitrate source. Nitrate administration increased tissue and plasma levels of bioactive nitrogen oxides. Moreover, chronic nitrate treatment reduced visceral fat accumulation and circulating levels of triglycerides and reversed the prediabetic phenotype in these animals. In rats, chronic nitrate treatment reduced blood pressure and this effect was also present during NOS inhibition. Our results show that dietary nitrate fuels a nitrate-nitrite-NO pathway that can partly compensate for disturbances in endogenous NO generation from eNOS. These findings may have implications for novel nutrition-based preventive and therapeutic strategies against cardiovascular disease and type 2 diabetes.
  •  
4.
  • Carlström, Mattias, 1941-, et al. (författare)
  • Dietary nitrate attenuates oxidative stress, prevents cardiac and renal injuries, and reduces blood pressure in salt-induced hypertension
  • 2011
  • Ingår i: Cardiovascular Research. - : Oxford University Press (OUP). - 0008-6363 .- 1755-3245. ; 89:3, s. 574-585
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims Reduced bioavailability of endogenous nitric oxide (NO) is a central pathophysiological event in hypertension and other cardiovascular diseases. Recently, it was demonstrated that inorganic nitrate from dietary sources is converted in vivo to form nitrite, NO, and other bioactive nitrogen oxides. We tested the hypothesis that dietary inorganic nitrate supplementation may have therapeutic effects in a model of renal and cardiovascular disease. Methods and results Sprague-Dawley rats subjected to unilateral nephrectomy and chronic high-salt diet from 3 weeks of age developed hypertension, cardiac hypertrophy and fibrosis, proteinuria, and histological as well as biochemical signs of renal damage and oxidative stress. Simultaneous nitrate treatment (0.1 or 1 mmol nitrate kg(-1) day(-1)), with the lower dose resembling the nitrate content of a diet rich in vegetables, attenuated hypertension dose-dependently with no signs of tolerance. Nitrate treatment almost completely prevented proteinuria and histological signs of renal injury, and the cardiac hypertrophy and fibrosis were attenuated. Mechanistically, dietary nitrate restored the tissue levels of bioactive nitrogen oxides and reduced the levels of oxidative stress markers in plasma (malondialdehyde) and urine (Class VI F2-isoprostanes and 8-hydroxy-2-deoxyguanosine). In addition, the increased circulating and urinary levels of dimethylarginines (ADMA and SDMA) in the hypertensive rats were normalized by nitrate supplementation. Conclusion Dietary inorganic nitrate is strongly protective in this model of renal and cardiovascular disease. Future studies will reveal if nitrate contributes to the well-known cardioprotective effects of a diet rich in vegetables.
  •  
5.
  •  
6.
  •  
7.
  • Peleli, Maria, et al. (författare)
  • Enhanced XOR activity in eNOS-deficient mice Effects on the nitrate-nitrite-NO pathway and ROS homeostasis
  • 2016
  • Ingår i: Free Radical Biology & Medicine. - : Elsevier BV. - 0891-5849 .- 1873-4596. ; 99, s. 472-484
  • Tidskriftsartikel (refereegranskat)abstract
    • Xanthine oxidoreductase (XOR) is generally known as the final enzyme in purine metabolism and as a source of reactive oxygen species (ROS). In addition, this enzyme has been suggested to mediate nitric oxide (NO) formation via reduction of inorganic nitrate and nitrite. This NO synthase (NOS)-independent pathway for NO generation is of particular importance during certain conditions when NO bioavailability is diminished due to reduced activity of endothelial NOS (eNOS) or increased oxidative stress, including aging and cardiovascular disease. The exact interplay between NOS- and XOR-derived NO generation is not fully elucidated yet. The aim of the present study was to investigate if eNOS deficiency is associated with changes in XOR expression and activity and the possible impact on nitrite, NO and ROS homeostasis. Plasma levels of nitrate and nitrite were similar between eNOS deficient (eNOS(-/-)) and wildtype (wt) mice. XOR activity was upregulated in eNOS(-/-) compared with wt, but not in nNOS(-/-), iNOS(-/-) or wt mice treated with the non-selective NOS inhibitor L-NAME. Following an acute dose of nitrate, plasma nitrite increased more in eNOS(-/-) compared with wt, and this augmented response was abolished by the selective XOR inhibitor febuxostat. Livers from eNOS(-/-) displayed higher nitrite reducing capacity compared with wt, and this effect was attenuated by febuxostat. Dietary supplementation with nitrate increased XOR expression and activity, but concomitantly reduced superoxide generation. The latter effect was also seen in vitro after nitrite administration. Treatment with febuxostat elevated blood pressure in eNOS(-/-), but not in wt mice. A high dose of dietary nitrate reduced blood pressure in na ve eNOS(-/-) mice, and again this effect was abolished by febuxostat. In conclusion, eNOS deficiency is associated with an upregulation of XOR facilitating the nitrate-nitrite-NO pathway and decreasing the generation of ROS. This interplay between XOR and eNOS is proposed to play a significant role in NO homeostasis and blood pressure regulation.
  •  
8.
  • Peleli, Maria, et al. (författare)
  • In adenosine A(2B) knockouts acute treatment with inorganic nitrate improves glucose disposal, oxidative stress, and AMPK signaling in the liver
  • 2015
  • Ingår i: Frontiers in Physiology. - : Frontiers Media SA. - 1664-042X. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Accumulating studies suggest that nitric oxide (NO) deficiency and oxidative stress are central pathological mechanisms in type 2 diabetes (T2D). Recent findings demonstrate therapeutic effects by boosting the nitrate-nitrite-NO pathway, which is an alternative pathway for NO formation. This study aimed at investigating the acute effects of inorganic nitrate on glucose and insulin signaling in adenosine A2B receptor knockout mice (A(2B)(-/-), a genetic mouse model of impaired metabolic regulation. Methods: Acute effects of nitrate treatment were investigated in aged wild-type (WT) and A(2B)(-/-) mice. One hour after injection with nitrate (0.1 mmol/kg, i.p.) or placebo, metabolic regulation was evaluated by intraperitoneal glucose and insulin tolerance tests. NADPH oxidase-mediated superoxide production and AMPK phosphorylation were measured in livers obtained from non-treated or glucose-treated mice, with or without prior nitrate injection. Plasma was used to determine insulin resistance (HOMA-IR) and NO signaling. Results: A(2B)(-/-) displayed increased body weight, reduced glucose clearance, and attenuated overall insulin responses compared with age-matched WT mice. Nitrate treatment increased circulating levels of nitrate, nitrite and cGMP in the A(2B)(-/-), and improved glucose clearance. In WT mice, however, nitrate treatment did not influence glucose clearance. HOMA-IR increased following glucose injection in the A(2B)(-/-), but remained at basal levels in mice pretreated with nitrate. NADPH oxidase activity in livers from A(2B)(-/-), but not WT mice, was reduced by nitrate treatment. Livers from A(2B)(-/-) displayed reduced AMPK phosphorylation compared with WT mice, and this was increased by nitrate treatment. Finally, injection with the anti-diabetic agent metformin induced similar therapeutic effects in the A(2B)(-/-) as observed with nitrate. Conclusion: The A(2B)(-/-) mouse is a genetic mouse model of metabolic syndrome. Acute treatment with nitrate improved the metabolic profile in it, at least partly via reduction in oxidative stress and improved AMPK signaling in the liver.
  •  
9.
  • Yang, Ting, et al. (författare)
  • Abrogation of adenosine A(1) receptor signalling improves metabolic regulation in mice by modulating oxidative stress and inflammatory responses
  • 2015
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 58:7, s. 1610-1620
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Adenosine is an important regulator of metabolism; however, the role of the A(1) receptor during ageing and obesity is unclear. The aim of this study was to investigate the effects of A(1) signalling in modulating metabolic function during ageing. Methods Age-matched young and aged A (1) (also known as Adora1)-knockout (A (1) (-/-)) and wild-type (A (1) (+/+)) mice were used. Metabolic regulation was evaluated by body composition, and glucose and insulin tolerance tests. Isolated islets and islet arterioles were used to detect islet endocrine and vascular function. Oxidative stress and inflammation status were measured in metabolic organs and systemically. Results Advanced age was associated with both reduced glucose clearance and insulin sensitivity, as well as increased visceral adipose tissue (VAT) in A (1) (+/+) compared with A (1) (-/-) mice. Islet morphology and insulin content were similar between genotypes, but relative changes in in vitro insulin release following glucose stimulation were reduced in aged A (1) (+/+) compared with A (1) (-/-) mice. Islet arteriolar responses to angiotensin II were stronger in aged A (1) (+/+) mice, this being associated with increased NADPH oxidase activity. Ageing resulted in multiple changes in A (1) (+/+) compared with A (1) (-/-) mice, including enhanced NADPH oxidase-derived O-2 (-) formation and NADPH oxidase isoform 2 (Nox2) protein expression in pancreas and VAT; elevated levels of circulating insulin, leptin and proinflammatory cytokines (TNF-alpha, IL-1 beta, IL-6 and IL-12); and accumulation of CD4(+) T cells in VAT. This was associated with impaired insulin signalling in VAT from aged A (1) (+/+) mice. Conclusions/interpretation These studies emphasise that A(1) receptors regulate metabolism and islet endocrine and vascular functions during ageing, including via the modulation of oxidative stress and inflammatory responses, among other things.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy