SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hidalgo Hugo G.) "

Sökning: WFRF:(Hidalgo Hugo G.)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arndt, D. S., et al. (författare)
  • STATE OF THE CLIMATE IN 2017
  • 2018
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 99:8, s. S1-S310
  • Forskningsöversikt (refereegranskat)
  •  
2.
  • Arndt, D. S., et al. (författare)
  • State of the Climate in 2016
  • 2017
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 98:8, s. S1-S280
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2016, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-continued to increase and reach new record highs. The 3.5 +/- 0.1 ppm rise in global annual mean carbon dioxide from 2015 to 2016 was the largest annual increase observed in the 58-year measurement record. The annual global average carbon dioxide concentration at Earth's surface surpassed 400 ppm (402.9 +/- 0.1 ppm) for the first time in the modern atmospheric measurement record and in ice core records dating back as far as 800000 years. One of the strongest El Nino events since at least 1950 dissipated in spring, and a weak La Nina evolved later in the year. Owing at least in part to the combination of El Nino conditions early in the year and a long-term upward trend, Earth's surface observed record warmth for a third consecutive year, albeit by a much slimmer margin than by which that record was set in 2015. Above Earth's surface, the annual lower troposphere temperature was record high according to all datasets analyzed, while the lower stratospheric temperature was record low according to most of the in situ and satellite datasets. Several countries, including Mexico and India, reported record high annual temperatures while many others observed near-record highs. A week-long heat wave at the end of April over the northern and eastern Indian peninsula, with temperatures surpassing 44 degrees C, contributed to a water crisis for 330 million people and to 300 fatalities. In the Arctic the 2016 land surface temperature was 2.0 degrees C above the 1981-2010 average, breaking the previous record of 2007, 2011, and 2015 by 0.8 degrees C, representing a 3.5 degrees C increase since the record began in 1900. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 24 March, the sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, tying with 2015 at 7.2% below the 1981-2010 average. The September 2016 Arctic sea ice minimum extent tied with 2007 for the second lowest value on record, 33% lower than the 1981-2010 average. Arctic sea ice cover remains relatively young and thin, making it vulnerable to continued extensive melt. The mass of the Greenland Ice Sheet, which has the capacity to contribute similar to 7 m to sea level rise, reached a record low value. The onset of its surface melt was the second earliest, after 2012, in the 37-year satellite record. Sea surface temperature was record high at the global scale, surpassing the previous record of 2015 by about 0.01 degrees C. The global sea surface temperature trend for the 21st century-to-date of +0.162 degrees C decade(-1) is much higher than the longer term 1950-2016 trend of +0.100 degrees C decade(-1). Global annual mean sea level also reached a new record high, marking the sixth consecutive year of increase. Global annual ocean heat content saw a slight drop compared to the record high in 2015. Alpine glacier retreat continued around the globe, and preliminary data indicate that 2016 is the 37th consecutive year of negative annual mass balance. Across the Northern Hemisphere, snow cover for each month from February to June was among its four least extensive in the 47-year satellite record. Continuing a pattern below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska and at the Canadian observatory on northernmost Ellesmere Island. In the Antarctic, record low monthly surface pressures were broken at many stations, with the southern annular mode setting record high index values in March and June. Monthly high surface pressure records for August and November were set at several stations. During this period, record low daily and monthly sea ice extents were observed, with the November mean sea ice extent more than 5 standard deviations below the 1981-2010 average. These record low sea ice values contrast sharply with the record high values observed during 2012-14. Over the region, springtime Antarctic stratospheric ozone depletion was less severe relative to the 1991-2006 average, but ozone levels were still low compared to pre-1990 levels. Closer to the equator, 93 named tropical storms were observed during 2016, above the 1981-2010 average of 82, but fewer than the 101 storms recorded in 2015. Three basins-the North Atlantic, and eastern and western North Pacific-experienced above-normal activity in 2016. The Australian basin recorded its least active season since the beginning of the satellite era in 1970. Overall, four tropical cyclones reached the Saffir-Simpson category 5 intensity level. The strong El Nino at the beginning of the year that transitioned to a weak La Nina contributed to enhanced precipitation variability around the world. Wet conditions were observed throughout the year across southern South America, causing repeated heavy flooding in Argentina, Paraguay, and Uruguay. Wetter-than-usual conditions were also observed for eastern Europe and central Asia, alleviating the drought conditions of 2014 and 2015 in southern Russia. In the United States, California had its first wetter-than-average year since 2012, after being plagued by drought for several years. Even so, the area covered by drought in 2016 at the global scale was among the largest in the post-1950 record. For each month, at least 12% of land surfaces experienced severe drought conditions or worse, the longest such stretch in the record. In northeastern Brazil, drought conditions were observed for the fifth consecutive year, making this the longest drought on record in the region. Dry conditions were also observed in western Bolivia and Peru; it was Bolivia's worst drought in the past 25 years. In May, with abnormally warm and dry conditions already prevailing over western Canada for about a year, the human-induced Fort McMurray wildfire burned nearly 590000 hectares and became the costliest disaster in Canadian history, with $3 billion (U.S. dollars) in insured losses.
  •  
3.
  • Blunden, Jessica, et al. (författare)
  • State of the Climate in 2012
  • 2013
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 94:8, s. S1-S258
  • Tidskriftsartikel (refereegranskat)abstract
    • For the first time in serveral years, the El Nino-Southern Oscillation did not dominate regional climate conditions around the globe. A weak La Ni a dissipated to ENSOneutral conditions by spring, and while El Nino appeared to be emerging during summer, this phase never fully developed as sea surface temperatures in the eastern conditions. Nevertheless, other large-scale climate patterns and extreme weather events impacted various regions during the year. A negative phase of the Arctic Oscillation from mid-January to early February contributed to frigid conditions in parts of northern Africa, eastern Europe, and western Asia. A lack of rain during the 2012 wet season led to the worst drought in at least the past three decades for northeastern Brazil. Central North America also experienced one of its most severe droughts on record. The Caribbean observed a very wet dry season and it was the Sahel's wettest rainy season in 50 years. Overall, the 2012 average temperature across global land and ocean surfaces ranked among the 10 warmest years on record. The global land surface temperature alone was also among the 10 warmest on record. In the upper atmosphere, the average stratospheric temperature was record or near-record cold, depending on the dataset. After a 30-year warming trend from 1970 to 1999 for global sea surface temperatures, the period 2000-12 had little further trend. This may be linked to the prevalence of La Ni a-like conditions during the 21st century. Heat content in the upper 700 m of the ocean remained near record high levels in 2012. Net increases from 2011 to 2012 were observed at 700-m to 2000-m depth and even in the abyssal ocean below. Following sharp decreases in to the effects of La Ni a, sea levels rebounded to reach records highs in 2012. The increased hydrological cycle seen in recent years continued, with more evaporation in drier locations and more precipitation in rainy areas. In a pattern that has held since 2004, salty areas of the ocean surfaces and subsurfaces were anomalously salty on average, while fresher areas were anomalously fresh. Global tropical cyclone activity during 2012 was near average, with a total of 84 storms compared with the 1981-2010 average of 89. Similar to 2010 and 2011, the North Atlantic was the only hurricane basin that experienced above-normal activity. In this basin, Sandy brought devastation to Cuba and parts of the eastern North American seaboard. All other basins experienced either near-or below-normal tropical cyclone activity. Only three tropical cyclones reached Category 5 intensity-all in Bopha became the only storm in the historical record to produce winds greater than 130 kt south of 7 N. It was also the costliest storm to affect the Philippines and killed more than 1000 residents. Minimum Arctic sea ice extent in September and Northern Hemisphere snow cover extent in June both reached new record lows. June snow cover extent is now declining at a faster rate (-17.6% per decade) than September sea ice extent (-13.0% per decade). Permafrost temperatures reached record high values in northernmost Alaska. A new melt extent record occurred on 11-12 July on the Greenland ice sheet; 97% of the ice sheet showed some form of melt, four times greater than the average melt for this time of year. The climate in Antarctica was relatively stable overall. The largest maximum sea ice extent since records begain in 1978 was observed in September 2012. In the stratosphere, warm air led to the second smallest ozone hole in the past two decades. Even so, the springtime ozone layer above Antarctica likely will not return to its early 1980s state until about 2060. Following a slight decline associated with the global 2 emissions from fossil fuel combustion and cement production reached a record 9.5 +/- 0.5 Pg C in 2011 and a new record of 9.7 +/- 0.5 Pg C is estimated for 2012. Atmospheric CO2 concentrations increased by 2.1 ppm in 2012, to 392.6 ppm. In spring 2012, 2 concentration exceeded 400 ppm at 7 of the 13 Arctic observation sites. Globally, other greenhouse gases including methane and nitrous oxide also continued to rise in concentration and the combined effect now represents a 32% increase in radiative forcing over a 1990 baseline. Concentrations of most ozone depleting substances continued to fall.
  •  
4.
  • Hidalgo, Hugo G., et al. (författare)
  • Hydrological climate change projections for Central America
  • 2013
  • Ingår i: Journal of Hydrology. - : Elsevier BV. - 0022-1694 .- 1879-2707. ; 495, s. 94-112
  • Tidskriftsartikel (refereegranskat)abstract
    • Runoff climate change projections for the 21st century were calculated from a suite of 30 General Circulation Model (GCM) simulations for the A1B emission scenario in a 0.5 degrees x 0.5 degrees grid over Central America. The GCM data were downscaled using a version of the Bias Correction and Spatial Downscaling (BCSD) method and then used in the Variable Infiltration Capacity (VIC) macroscale hydrological model. The VIC model showed calibration skill in Honduras, Nicaragua, Costa Rica and Panama, but the results for some of the northern countries (Guatemala, El Salvador and Belize) and for the Caribbean coast of Central America was not satisfactory. Bias correction showed to remove effectively the biases in the GCMs. Results of the projected climate in the 2050-2099 period showed median significant reductions in precipitation (as much as 5-10%) and runoff (as much as 10-30%) in northern Central America. Therefore in this sub-region the prevalence of severe drought may increase significantly in the future under this emissions scenario. Northern Central America could warm as much as 3 degrees C during 2050-2099 and southern Central America could reach increases as much as 4 degrees C during the same period. The projected dry pattern over Central America is consistent with a southward displacement of the Intertropical Convergence Zone (ITCZ). In addition, downscaling of the NCEP/NCAR Reanalysis data from 1948 to 2012 and posterior run in VIC, for two locations in the northern and southern sub-regions of Central America, suggested that the annual runoff has been decreasing since ca. 1980, which is consistent with the sign of the runoff changes of the GCM projections. However, the Reanalysis 1980-2012 drying trends are generally much stronger than the corresponding GCM trends. Among the possible reasons for that discrepancy are model deficiencies, amplification of the trends due to constructive interference with natural modes of variability in the Reanalysis data, errors in the Reanalysis (modeled) precipitation data, and that the drying signal is more pronounced than predicted by the emissions scenario used. A few studies show that extrapolations of future climate from paleoclimatic indicators project a wetter climate in northern Central America, which is inconsistent with the modeling results presented here. However, these types of extrapolations should be done with caution, as the future climate responds to an extra forcing mechanism (anthropogenic) that was not present prehistorically and therefore the response could also be different than in the past.
  •  
5.
  • Maldonado, Tito, 1983-, et al. (författare)
  • A review of the main drivers and variability of Central America's Climate and seasonal forecast systems
  • 2018
  • Ingår i: Revista de biologia tropical. - : Universidad de Costa Rica. - 0034-7744 .- 2215-2075. ; 66, s. S153-S175
  • Forskningsöversikt (refereegranskat)abstract
    • Central America is a region susceptible to natural disasters and climate change. We reviewed the literature on the main atmospheric and oceanographic forces and climate modulators affecting Central America, for different spatial and time scales. We also reviewed the reported correlation between climate variability, natural hazards and climate change aspects (in the past and future). In addition, we examined the current state of seasonal prediction systems being applied to the region. At inter-annual scales, El Nino/Southern Oscillation is the main climate modulator; however, other indices such as the Tropical North Atlantic, Atlantic Multi-Decadal Oscillation and Pacific Decadal Oscillation, have shown a correlation with precipitation anomalies in the region. Current seasonal forecast systems in the region have shown a constant development, including incorporation of different approaches ranging from statistical to dynamical downscaling, improving prediction of variables such as precipitation. Many studies have revealed the need of including -in addition to the climatic information-socio-economic variables to assess the impact of natural disasters and climate change in the region. These studies highlight the importance of socio-economic and human life losses associated with the impacts caused by natural hazards for organizations and governments.
  •  
6.
  • Quesada-Montano, Beatriz, 1984-, et al. (författare)
  • Automation of hydrological drought typology to study drought propagation in a tropical catchment
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Understanding different types of drought and how they propagate through the hydrological cycle from precipitation to streamflow and groundwater deficits is important for improving water and risk management policies. Drought in the tropics is a recurrent phenomenon, but limited knowledge exists about drought severity and duration as well as the processes that cause different types of drought. At the catchment scale, analysing drought propagation is usually done manually. This can be time consuming (e.g. when dealing with long time series or many catchments) and may introduce subjective elements into the analysis that affect the comparability between catchments and studies. In this study, we developed a methodology to provide an automated objective procedure for drought typology to study hydrological drought propagation in the tropics.  We selected the Savegre catchment in Costa Rica as a proof-of-concept pilot study. The first step was to analyse if the types of drought affecting this catchment could be explained in terms of the process-based typology available in the literature: classical rainfall deficit drought, wet-to-dry season drought, and composite drought. Then, based on the manual typology, we defined different criteria for the hydrological drought types to make the typology automated and objective. Finally, we analysed drought propagation using a set of duration, timing and deficit indicators. We found that the process-based hydrological typology available in the literature is suitable to describe the different drought processes occurring in Savegre. The classification obtained with the automated typology was highly similar to the manual typology, with the exception of one event. We found that most of the detected droughts (71% and 73% from all river discharge and groundwater droughts, respectively) were classical rainfall deficits droughts, which suggests that droughts in this catchment are highly climate dominated. However, the importance of storage control was reflected during the dry season, when some of the longest and most severe events took place. The most severe events were composite and wet-to-dry season droughts, but we also found highly severe classical rainfall deficits droughts. Our results can potentially be applied to the wider tropics facilitating automatic drought classification using process-based selection criteria. Our study contributes to the overall knowledge of drought propagation in tropical catchments and is useful for supporting drought monitoring and forecasting, which is a much needed tool for water and drought-related disaster management in the tropics. 
  •  
7.
  • Quesada Montano, Beatriz, et al. (författare)
  • Can climate variability information constrain a hydrological model for an ungauged Costa Rican catchment?
  • 2018
  • Ingår i: Hydrological Processes. - : WILEY. - 0885-6087 .- 1099-1085. ; 32:6, s. 830-846
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-term hydrological data are key to understanding catchment behaviour and for decision making within water management and planning. Given the lack of observed data in many regions worldwide, such as Central America, hydrological models are an alternative for reproducing historical streamflow series. Additional types of informationto locally observed dischargecan be used to constrain model parameter uncertainty for ungauged catchments. Given the strong influence that climatic large-scale processes exert on streamflow variability in the Central American region, we explored the use of climate variability knowledge as process constraints to constrain the simulated discharge uncertainty for a Costa Rican catchment, assumed to be ungauged. To reduce model uncertainty, we first rejected parameter relationships that disagreed with our understanding of the system. Then, based on this reduced parameter space, we applied the climate-based process constraints at long-term, inter-annual, and intra-annual timescales. In the first step, we reduced the initial number of parameters by 52%, and then, we further reduced the number of parameters by 3% with the climate constraints. Finally, we compared the climate-based constraints with a constraint based on global maps of low-flow statistics. This latter constraint proved to be more restrictive than those based on climate variability (further reducing the number of parameters by 66% compared with 3%). Even so, the climate-based constraints rejected inconsistent model simulations that were not rejected by the low-flow statistics constraint. When taken all together, the constraints produced constrained simulation uncertainty bands, and the median simulated discharge followed the observed time series to a similar level as an optimized model. All the constraints were found useful in constraining model uncertainty for anassumed to beungauged basin. This shows that our method is promising for modelling long-term flow data for ungauged catchments on the Pacific side of Central America and that similar methods can be developed for ungauged basins in other regions where climate variability exerts a strong control on streamflow variability.
  •  
8.
  •  
9.
  • Quesada Montano, Beatriz, et al. (författare)
  • Characterising droughts in Central America with uncertain hydro-meteorological data
  • 2019
  • Ingår i: Journal of Theoretical and Applied Climatology. - : Springer Science and Business Media LLC. - 0177-798X .- 1434-4483. ; 137:3-4, s. 2125-2138
  • Tidskriftsartikel (refereegranskat)abstract
    • Central America is frequently affected by droughts that cause significant socio-economic and environmental problems. Drought characterisation, monitoring and forecasting are potentially useful to support water resource management. Drought indices are designed for these purposes, but their ability to characterise droughts depends on the characteristics of the regional climate and the quality of the available data. Local comprehensive and high-quality observational networks of meteorological and hydrological data are not available, which limits the choice of drought indices and makes it important to assess available datasets. This study evaluated which combinations of drought index and meteorological dataset were most suitable for characterising droughts in the region. We evaluated the standardised precipitation index (SPI), a modified version of the deciles index (DI), the standardised precipitation evapotranspiration index (SPEI) and the effective drought index (EDI). These were calculated using precipitation data from the Climate Hazards Group Infra-Red Precipitation with Station (CHIRPS), the CRN073 dataset, the Climate Research Unit (CRU), ECMWF Reanalysis (ERA-Interim) and a regional station dataset, and temperature from the CRU and ERA-Interim datasets. The gridded meteorological precipitation datasets were compared to assess how well they captured key features of the regional climate. The performance of all the drought indices calculated with all the meteorological datasets was then evaluated against a drought index calculated using river discharge data. Results showed that the selection of database was more important than the selection of drought index and that the best combinations were the EDI and DI calculated with CHIRPS and CRN073. Results also highlighted the importance of including indices like SPEI for drought assessment in Central America.
  •  
10.
  • Quesada-Montano, Beatriz, 1984- (författare)
  • Hydro-Climatic Variability and Change in Central America : Supporting Risk Reduction Through Improved Analyses and Data
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Floods and droughts are frequent in Central America and cause large social, economic and environmental impacts. A crucial step in disaster risk reduction is to have a good understanding of the causing mechanisms of extreme events and their spatio-temporal characteristics. For this, a key aspect is access to a dense network of long and good-quality hydro-meteorological data. Unfortunately, such ideal data are sparse or non-existent in Central America. In addition, the existing methods for hydro-climatic studies need to be revised and/or improved to find the most suitable for the region’s climate, geography and hydro-climatic data situation. This work has the ultimate goal to support the reduction of risks associated with hydro-climatic-induced disasters in Central America. This was sought by developing ways to reduce data-related uncertainties and by improving the available methods to study and understand hydro-climatic variability processes. In terms of data-uncertainty reduction, this thesis includes the development of a high resolution air temperature dataset and a methodology to reduce uncertainties in a hydrological model at ungauged basins. The dataset was able to capture the spatial patterns with a detail not available with existing datasets. The methodology significantly reduced uncertainties in an assumed-to-be ungauged catchment. In terms of methodological improvements, this thesis includes an assessment of the most suitable combination of (available) meteorological datasets and drought indices to characterise droughts in Central America. In addition, a methodology was developed to analyse drought propagation in a tropical catchment, in an automated, objective way. Results from the assessment and the drought propagation analysis contributed with improving the understanding of drought patterns and generating processes in the region. Finally, a methodology was proposed for assessing changes in both hydrological extremes in a consistent way. This contrasts with most commonly used frameworks that study each extreme individually. The method provides important characteristics (frequency, duration and magnitude), information that can be useful for decisions within risk reduction and water management. The results presented in this thesis are a contribution, in terms of hydro-climatic data and assessment methods, for supporting risk reduction of disasters related with hydro-climatic extremes in Central America.
  •  
11.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11
Typ av publikation
tidskriftsartikel (7)
forskningsöversikt (2)
annan publikation (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (8)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Amador, Jorge A. (4)
Wang, M. (3)
Allan, Rob (3)
Alves, Lincoln M. (3)
Arndt, Derek S. (3)
Baringer, Molly O. (3)
visa fler...
Barreira, Sandra (3)
Becker, Andreas (3)
Bell, Gerald D. (3)
Benedetti, Angela (3)
Berrisford, Paul (3)
Berry, David I. (3)
Bissolli, Peter (3)
Blake, Eric S. (3)
Box, J. E. (3)
Boyer, Tim (3)
Braathen, Geir O. (3)
Bromwich, David H. (3)
Brown, R. (3)
Bulygina, Olga N. (3)
Burgess, D. (3)
Calderón, Blanca (3)
Camargo, Suzana J. (3)
Cappelen, J. (3)
Chambers, Don P. (3)
Christiansen, Hanne ... (3)
Christy, John R. (3)
Colwell, Steve (3)
Crouch, Jake (3)
De Jeu, Richard A.M. (3)
Derksen, C. (3)
Diamond, Howard J. (3)
Dlugokencky, Ed J. (3)
Dohan, Kathleen (3)
Dolman, A. Johannes (3)
Domingues, Catia M. (3)
Dorigo, Wouter A. (3)
Drozdov, D. S. (3)
Dunn, Robert J.H. (3)
Fogt, Ryan L. (3)
Johnson, Bryan (3)
Keller, Linda M. (3)
Lazzara, Matthew A. (3)
Long, Craig S. (3)
Massom, Robert A. (3)
Nash, Eric R. (3)
Newman, Paul A. (3)
Reid, Phillip (3)
Santee, Michelle L. (3)
Scambos, Ted A. (3)
visa färre...
Lärosäte
Uppsala universitet (10)
IVL Svenska Miljöinstitutet (2)
Göteborgs universitet (1)
Umeå universitet (1)
Stockholms universitet (1)
Karlstads universitet (1)
Språk
Engelska (11)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (10)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy