SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Holtta T.) "

Sökning: WFRF:(Holtta T.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Poyatos, R., et al. (författare)
  • Global transpiration data from sap flow measurements: the SAPFLUXNET database
  • 2021
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 13:6, s. 2607-2649
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr" R package - designed to access, visualize, and process SAPFLUXNET data - is available from CRAN.
  •  
3.
  •  
4.
  • Semb, G, et al. (författare)
  • Erratum
  • 2017
  • Ingår i: Journal of plastic surgery and hand surgery. - 2000-6764. ; 51:2, s. 158-158
  • Tidskriftsartikel (refereegranskat)
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Holtta-Vuori, M., et al. (författare)
  • Zebrafish: gaining popularity in lipid research
  • 2010
  • Ingår i: Biochemical Journal. - 0264-6021 .- 1470-8728. ; 429:2, s. 235-242
  • Tidskriftsartikel (refereegranskat)abstract
    • Zebrafish are an increasingly popular vertebrate model organism in which to study biological phenomena. It has been widely used, especially ill developmental biology and neurobiology, and many aspects of its development and physiology are similar to those of mammals. The popularity of zebrafish relies on its relatively low cost, rapid development and ease of genetic manipulation. Moreover, the optical transparency of the developing fish together with novel imaging techniques enable the direct visualization of complex phenomena at the level of the entire organism. This potential is now also being increasingly appreciated by the lipid research community. In the present review we summarize basic information on the lipid composition and distribution in zebrafish tissues, including lipoprotein metabolism, intestinal lipid absorption, the yolk lipids and their mobilization, as well as lipids in the nervous system. We also discuss studies in which zebrafish have been employed for the visualization of whole-body lipid distribution and trafficking. Finally, recent advances in using zebrafish as a model for lipid-related diseases, including atherosclerosis, obesity, diabetes and hepatic steatosis are highlighted. As the insights into zebrafish lipid metabolism increase, it is likely that zebrafish as a model organism will become an increasingly powerful tool in lipid research.
  •  
9.
  • Mahlamaki, K., et al. (författare)
  • Lean product development point of view to current challenges of engineering change management in traditional manufacturing industries
  • 2016
  • Ingår i: 2009 IEEE International Technology Management Conference, ICE 2009. - : Institute of Electrical and Electronics Engineers Inc.. - 9780853582595
  • Konferensbidrag (refereegranskat)abstract
    • Engineering change management causes many challenges in product development. For example, the impacts of a change can delay the whole product development project, and failed communication of changes can cause rework and scrap in production. Lean product development is one possibility to organize product development efficiently. We have conducted four case studies in heavy machinery, mechatronics and automotive industries in Finland and in Sweden to identify the current challenges in engineering change management. The challenges are categorized according to the lean product development principles they break. The results show that most challenges are related to processes and technology used in engineering change management. We suggest that implementing lean product development principles at the case companies could help in overcoming the challenges discovered.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy