SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Inguaggiato S.) "

Sökning: WFRF:(Inguaggiato S.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Galle, Bo, 1952, et al. (författare)
  • NOVAC – Network for Observation of Volcanic and Atmospheric Change, recent developments and present status
  • 2011
  • Ingår i: 11th IAVCEI-CCVG Gas Workshop, September 1 - 10, 2011, Kamchatka, Russia.
  • Konferensbidrag (refereegranskat)abstract
    • The NOVAC project, funded by European Union, was started in October 2005 with the aim to establish a global network of stations for the quantitative measurement of volcanic gas emissions. The network is based on a novel type of instrument, the Scanning Dual-beam mini-DOAS. Primarily theinstruments will be used to provide new parameters in the toolbox of observatories for gas emission estimates, geophysical research and hazard assessment. In addition, data are exploited for other scientific purposes, e.g. global estimates of volcanic gas emissions, regional to global statistical analysis, and studies of atmospheric chemistry. In particular large scale validation of satellite measurements of volcanic gas emissions will be possible, bringing space-borne observation of volcanoes a significant step forward.The Scanning Dual-beam Mini-DOAS instrument is capable of real-time automatic, unattended measurement of the total emission fluxes of SO2 and BrO from a volcano with better then 5 minutes time resolution during daylight. The high time-resolution of the data enables correlations with othergeophysical data, e.g. seismicity, thus significantly extending the information available for real-time hazard assessment and research. By comparing high time resolution gas emission data with emissions from neighboring volcanoes on different geographical scales, or with other geophysical events (earthquakes, tidal waves) mechanisms of volcanic forcing may be revealed.The network today encompasses 58 instruments installed on 24 volcanoes, including some of the most active and strongest degassing volcanoes in the world.In addition a mobile version of the instrument has been developed intended for rapid deployment at a volcano in relation to a volcanic crisis.The project and its present status will be presented.
  •  
2.
  • Arellano, Santiago, 1981, et al. (författare)
  • Synoptic analysis of a decade of daily measurements of SO2 emission in the troposphere from volcanoes of the global ground-based Network for Observation of Volcanic and Atmospheric Change
  • 2021
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3516 .- 1866-3508. ; 13:3, s. 1167-1188
  • Tidskriftsartikel (refereegranskat)abstract
    • Volcanic plumes are common and far-reaching manifestations of volcanic activity during and between eruptions. Observations of the rate of emission and composition of volcanic plumes are essential to recognize and, in some cases, predict the state of volcanic activity. Measurements of the size and location of the plumes are important to assess the impact of the emission from sporadic or localized events to persistent or widespread processes of climatic and environmental importance. These observations provide information on volatile budgets on Earth, chemical evolution of magmas, and atmospheric circulation and dynamics. Space-based observations during the last decades have given us a global view of Earth's volcanic emission, particularly of sulfur dioxide (SO2). Although none of the satellite missions were intended to be used for measurement of volcanic gas emission, specially adapted algorithms have produced time-averaged global emission budgets. These have confirmed that tropospheric plumes, produced from persistent degassing of weak sources, dominate the total emission of volcanic SO2. Although space-based observations have provided this global insight into some aspects of Earth's volcanism, it still has important limitations. The magnitude and short-term variability of lower-atmosphere emissions, historically less accessible from space, remain largely uncertain. Operational monitoring of volcanic plumes, at scales relevant for adequate surveillance, has been facilitated through the use of ground-based scanning differential optical absorption spectrometer (ScanDOAS) instruments since the beginning of this century, largely due to the coordinated effort of the Network for Observation of Volcanic and Atmospheric Change (NOVAC). In this study, we present a compilation of results of homogenized post-analysis of measurements of SO2 flux and plume parameters obtained during the period March 2005 to January 2017 of 32 volcanoes in NOVAC. This inventory opens a window into the short-term emission patterns of a diverse set of volcanoes in terms of magma composition, geographical location, magnitude of emission, and style of eruptive activity. We find that passive volcanic degassing is by no means a stationary process in time and that large sub-daily variability is observed in the flux of volcanic gases, which has implications for emission budgets produced using short-term, sporadic observations. The use of a standard evaluation method allows for intercomparison between different volcanoes and between ground- and space-based measurements of the same volcanoes. The emission of several weakly degassing volcanoes, undetected by satellites, is presented for the first time. We also compare our results with those reported in the literature, providing ranges of variability in emission not accessible in the past. The open-access data repository introduced in this article will enable further exploitation of this unique dataset, with a focus on volcanological research, risk assessment, satellite-sensor validation, and improved quantification of the prevalent tropospheric component of global volcanic emission. Datasets for each volcano are made available at https://novac.chalmers.se (last access: 1 October 2020) under the CC-BY 4 license or through the DOI (digital object identifier) links provided in Table 1.
  •  
3.
  • Vita, F., et al. (författare)
  • Continuous SO2 flux measurements for Vulcano Island, Italy
  • 2012
  • Ingår i: Annals of Geophysics. - : Instituto Nazionale di Geofisica e Vulcanologia, INGV. - 1593-5213 .- 2037-416X. ; 55:2, s. 301-308
  • Tidskriftsartikel (refereegranskat)abstract
    • The La Fossa cone of Vulcano Island (Aeolian Archipelago, Italy) is a closed conduit volcano. Today, Vulcano Island is characterized by sulfataric activity, with a large fumarolic field that is mainly located in the summit area. A scanning differential optical absorption spectroscopy instrument designed by the Optical Sensing Group of Chalmers University of Technology in Goteborg, Sweden, was installed in the framework of the European project "Network for Observation of Volcanic and Atmospheric Change", in March 2008. This study presents the first dataset of SO2 plume fluxes recorded for a closed volcanic system. Between 2008 and 2010, the SO2 fluxes recorded showed average values of 12 t.d(-1) during the normal sulfataric activity of Vulcano Island, with one exceptional event of strong degassing that occurred between September and December, 2009, when the SO2 emissions reached up to 100 t.d(-1).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy