SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Isella A.) "

Sökning: WFRF:(Isella A.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Keppler, M., et al. (författare)
  • Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Young circumstellar disks are the birthplaces of planets. Their study is of prime interest to understand the physical and chemical conditions under which planet formation takes place. Only very few detections of planet candidates within these disks exist, and most of them are currently suspected to be disk features.Aims. In this context, the transition disk around the young star PDS 70 is of particular interest, due to its large gap identified in previous observations, indicative of ongoing planet formation. We aim to search for the presence of an embedded young planet and search for disk structures that may be the result of disk-planet interactions and other evolutionary processes.Methods. We analyse new and archival near-infrared images of the transition disk PDS 70 obtained with the VLT/SPHERE, VLT/NaCo, and Gemini/NICI instruments in polarimetric differential imaging and angular differential imaging modes.Results. We detect a point source within the gap of the disk at about 195 mas (similar to 22 au) projected separation. The detection is confirmed at five different epochs, in three filter bands and using different instruments. The astrometry results in an object of bound nature, with high significance. The comparison of the measured magnitudes and colours to evolutionary tracks suggests that the detection is a companion of planetary mass. The luminosity of the detected object is consistent with that of an L-type dwarf, but its IR colours are redder, possibly indicating the presence of warm surrounding material. Further, we confirm the detection of a large gap of similar to 54 au in size within the disk in our scattered light images, and detect a signal from an inner disk component. We find that its spatial extent is very likely smaller than similar to 17 au in radius, and its position angle is consistent with that of the outer disk. The images of the outer disk show evidence of a complex azimuthal brightness distribution which is different at different wavelengths and may in part be explained by Rayleigh scattering from very small grains.Conclusions. The detection of a young protoplanet within the gap of the transition disk around PDS 70 opens the door to a so far observationally unexplored parameter space of planetary formation and evolution. Future observations of this system at different wavelengths and continuing astrometry will allow us to test theoretical predictions regarding planet-disk interactions, planetary atmospheres, and evolutionary models.
  •  
2.
  • de Boer, J., et al. (författare)
  • Multiple rings in the transition disk and companion candidates around RX J1615.3-3255 High contrast imaging with VLT/SPHERE
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 595
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The effects of a planet sculpting the disk from which it formed are most likely to be found in disks that are in transition between being classical protoplanetary and debris disks. Recent direct imaging of transition disks has revealed structures such as dust rings, gaps, and spiral arms, but an unambiguous link between these structures and sculpting planets is yet to be found. Aims. We aim to find signs of ongoing planet-disk interaction and study the distribution of small grains at the surface of the transition disk around RXJ1615.3-3255 (RX J1615). Methods. We observed RXJ1615 with VLT/SPHERE. From these observations, we obtained polarimetric imaging with ZIMPOL (R'-band) and IRDIS (J), and IRDIS (H2H3) dual-band imaging with simultaneous spatially resolved spectra with the IFS (YJ). Results. We image the disk for the first time in scattered light and detect two arcs, two rings, a gap and an inner disk with marginal evidence for an inner cavity. The shapes of the arcs suggest that they are probably segments of full rings. Ellipse fitting for the two rings and inner disk yield a disk inclination i = 47 +/- 2 degrees and find semi-major axes of 1.50 +/- 0.01 '' (278 au), 1.06 +/- 0.01 '' (196 au) and 0.30 +/- 0.01 '' (56 au), respectively. We determine the scattering surface height above the midplane, based on the projected ring center offsets. Nine point sources are detected between 2.1 '' and 8.0 '' separation and considered as companion candidates. With NACO data we recover four of the nine point sources, which we determine to be not co-moving, and therefore unbound to the system. Conclusions. We present the first detection of the transition disk of RXJ1615 in scattered light. The height of the rings indicate limited flaring of the disk surface, which enables partial self-shadowing in the disk. The outermost arc either traces the bottom of the disk or it is another ring with semi-major axis greater than or similar to 2.35 '' (435 au). We explore both scenarios, extrapolating the complete shape of the feature, which will allow us to distinguish between the two in future observations. The most attractive scenario, where the arc traces the bottom of the outer ring, requires the disk to be truncated at r approximate to 360 au. If the closest companion candidate is indeed orbiting the disk at 540 au, then it would be the most likely cause for such truncation. This companion candidate, as well as the remaining four, all require follow up observations to determine if they are bound to the system.
  •  
3.
  • Facchini, S., et al. (författare)
  • Resolved ALMA observations of water in the inner astronomical units of the HL Tau disk
  • 2024
  • Ingår i: Nature Astronomy. - 2397-3366. ; 8:5, s. 587-595
  • Tidskriftsartikel (refereegranskat)abstract
    • The water molecule is a key ingredient in the formation of planetary systems, with the water snowline being a favourable location for the growth of massive planetary cores. Here we present Atacama Large Millimeter/submillimeter Array data of the ringed protoplanetary disk orbiting the young star HL Tauri that show centrally peaked, bright emission arising from three distinct transitions of the main water isotopologue (H216O). The spatially and spectrally resolved water content probes gas in a thermal range down to the water sublimation temperature. Our analysis implies a stringent lower limit of 3.7 Earth oceans of water vapour available within the inner 17 astronomical units of the system. We show that our observations are limited to probing the water content in the atmosphere of the disk, due to the high dust column density and absorption, and indicate that the main water isotopologue is the best tracer to spatially resolve water vapour in protoplanetary disks.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy