SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Janssens Steven B.) "

Sökning: WFRF:(Janssens Steven B.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Merckx, Vincent S. F. T., et al. (författare)
  • Evolution of endemismon a young tropical mountain
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 524:7565, s. 347-
  • Tidskriftsartikel (refereegranskat)abstract
    • Tropical mountains are hot spots of biodiversity and endemism(1-3), but the evolutionary origins of their unique biotas are poorly understood(4). In varying degrees, local and regional extinction, long-distance colonization, and local recruitment may all contribute to the exceptional character of these communities(5). Also, it is debated whether mountain endemics mostly originate from local lowland taxa, or from lineages that reach the mountain by long-range dispersal from cool localities elsewhere(6). Here we investigate the evolutionary routes to endemism by sampling an entire tropical mountain biota on the 4,095-metre-high Mount Kinabalu in Sabah, East Malaysia. We discover that most of its unique biodiversity is younger than the mountain itself (6 million years), and comprises a mix of immigrant pre-adapted lineages and descendants from local lowland ancestors, although substantial shifts from lower to higher vegetation zones in this latter group were rare. These insights could improve forecasts of the likelihood of extinction and 'evolutionary rescue'(7) in montane biodiversity hot spots under climate change scenarios.
  •  
2.
  • Saunois, Marielle, et al. (författare)
  • The Global Methane Budget 2000–2017
  • 2020
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3516 .- 1866-3508. ; 12:3, s. 1561-1623
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations).For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or ∼ 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is 29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009), and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr−1, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (∼ 65 % of the global budget, < 30∘ N) compared to mid-latitudes (∼ 30 %, 30–60∘ N) and high northern latitudes (∼ 4 %, 60–90∘ N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters.Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr−1 lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4 yr−1 by 8 Tg CH4 yr−1, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning.The data presented here can be downloaded from https://doi.org/10.18160/GCP-CH4-2019 (Saunois et al., 2020) and from the Global Carbon Project.
  •  
3.
  • Abrahamczyk, Stefan, et al. (författare)
  • Evolution of brood-site mimicry in Madagascan Impatiens (Balsaminaceae)
  • 2021
  • Ingår i: Perspectives in plant ecology, evolution and systematics. - : Elsevier BV. - 1433-8319 .- 1618-0437. ; 49
  • Tidskriftsartikel (refereegranskat)abstract
    • The species-rich flora of Madagascar is well known for a range of unusual floral ecologies. One example is Impatiens section Trimorphopetalum with its unique combination of floral traits: small, spur-less, cup-or lip shaped, greenish or brownish flowers. So far no hypotheses on floral function or pollination of this peculiar group have been proposed. We analysed six reproductive traits in relation to pollination syndromes for 34 Madagascan Impatiens species, including 18 species of section Trimorphopetalum plus six outgroup species, in a phylogenetic framework. Further, we present pollinator observations for one additional species of Trimophopetalum. All pollination syndromes occurring in the African species are also present in Madagascan Impatiens. In addition, species of Trimorphopetalum represent two unique floral types, possibly corresponding to two different types of fly pollination. The evolution of these flower types corresponds to a strong decrease in nectar production, flower display size, pollen grain and ovule number. Autogamy is found in one derived sub-clade of the otherwise largely pollinator-dependent Trimorphopetalum. We find evidence consistent with the evolution of brood-site deception and fungus mimicry in combination with fly pollination in one clade of Trimorphopetalum and the stepwise evolution of autogamy in the second clade. The evolution of these very different reproductive strategies may have been triggered by pollinator limitation in the dense, humid forest undergrowth of Madagascar.
  •  
4.
  • Appelhans, Marc S., et al. (författare)
  • Age and historical biogeography of the pantropically distributed Spathelioideae (Rutaceae, Sapindales)
  • 2012
  • Ingår i: Journal of Biogeography. - : Wiley. - 0305-0270 .- 1365-2699. ; 39:7, s. 1235-1250
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim The family Rutaceae (rue family) is the largest within the eudicot order Sapindales and is distributed mainly in the tropical and subtropical regions of both the New World and the Old World, with a few genera in temperate zones. The main objective of this study is to present molecular dating and biogeographical analyses of the subfamily Spathelioideae, the earliest branching clade (which includes eight extant genera), to interpret the temporal and spatial origins of this group, ascertaining possible vicariant patterns and dispersal routes and inferring diversification rates through time. Location Pantropics. Methods A dataset comprising a complete taxon sampling at generic level (83.3% at species level) of Spathelioideae was used for a Bayesian molecular dating analysis (beast). Four fossil calibration points and an age constraint for Sapindales were applied. An ancestral area reconstruction analysis utilizing the dispersalextinctioncladogenesis model and diversification rate analyses was conducted. Results Dating analyses indicate that Rutaceae and Spathelioideae are probably of Late Cretaceous origin, after which Spathelioideae split into a Neotropical and a Palaeotropical lineage. The Palaeotropical taxa have their origin inferred in Africa, with postulated dispersal events to the Mediterranean, the Canary Islands, Madagascar and Southeast Asia. The lineages within Spathelioideae evolved at a relatively constant diversification rate. However, abrupt changes in diversification rates are inferred from the beginning of the Miocene and during the Pliocene/Pleistocene. Main conclusions The geographical origin of Spathelioideae probably lies in Africa. The existence of a Neotropical lineage may be the result of a dispersal event at a time in the Late Cretaceous when South America and Africa were still quite close to each other (assuming that our age estimates are close to the actual ages), or by Gondwanan vicariance (assuming that our age estimates provide minimal ages only). Separation of land masses caused by sea level changes during the Pliocene and Pleistocene may have been triggers for speciation in the Caribbean genus Spathelia.
  •  
5.
  • Hendriks, Kasper P., et al. (författare)
  • Global Brassicaceae phylogeny based on filtering of 1,000-gene dataset
  • 2023
  • Ingår i: Current Biology. - : Elsevier. - 0960-9822 .- 1879-0445. ; 33:19, s. 4052-4068
  • Tidskriftsartikel (refereegranskat)abstract
    • The mustard family (Brassicaceae) is a scientifically and economically important family, containing the model plant Arabidopsis thaliana and numerous crop species that feed billions worldwide. Despite its relevance, most phylogenetic trees of the family are incompletely sampled and often contain poorly supported branches. Here, we present the most complete Brassicaceae genus-level family phylogenies to date (Bras-sicaceae Tree of Life or BrassiToL) based on nuclear (1,081 genes, 319 of the 349 genera; 57 of the 58 tribes) and plastome (60 genes, 265 genera; all tribes) data. We found cytonuclear discordance between the two, which is likely a result of rampant hybridization among closely and more distantly related lineages. To eval-uate the impact of such hybridization on the nuclear phylogeny reconstruction, we performed five different gene sampling routines, which increasingly removed putatively paralog genes. Our cleaned subset of 297 genes revealed high support for the tribes, whereas support for the main lineages (supertribes) was moder-ate. Calibration based on the 20 most clock-like nuclear genes suggests a late Eocene to late Oligocene origin of the family. Finally, our results strongly support a recently published new family classification, dividing the family into two subfamilies (one with five supertribes), together representing 58 tribes. This includes five recently described or re-established tribes, including Arabidopsideae, a monogeneric tribe accommodating Arabidopsis without any close relatives. With a worldwide community of thousands of researchers working on Brassicaceae and its diverse members, our new genus-level family phylogeny will be an indispensable tool for studies on biodiversity and plant biology.
  •  
6.
  • Yu, Sheng-Xiang, et al. (författare)
  • Phylogeny of Impatiens (Balsaminaceae) : integrating molecular and morphological evidence into a new classification
  • 2016
  • Ingår i: Cladistics. - : Wiley-Blackwell. - 0748-3007 .- 1096-0031. ; 32:2, s. 179-197
  • Tidskriftsartikel (refereegranskat)abstract
    • Impatiens L. is one of the largest angiosperm genera, containing over 1000 species, and is notorious for its taxonomic difficulty. Here, we present, to our knowledge, the most comprehensive phylogenetic analysis of the genus to date based on a total evidence approach. Forty-six morphological characters, mainly obtained from our own investigations, are combined with sequence data from three genetic regions, including nuclear ribosomal ITS and plastid atpB-rbcL and trnL-F. We include 150 Impatiens species representing all clades recovered by previous phylogenetic analyses as well as three outgroups. Maximum-parsimony and Bayesian inference methods were used to infer phylogenetic relationships. Our analyses concur with previous studies, but in most cases provide stronger support. Impatiens splits into two major clades. For the first time, we report that species with three-colpate pollen and four carpels form a monophyletic group (clade I). Within clade II, seven well-supported subclades are recognized. Within this phylogenetic framework, character evolution is reconstructed, and diagnostic morphological characters for different clades and subclades are identified and discussed. Based on both morphological and molecular evidence, a new classification outline is presented, in which Impatiens is divided into two subgenera, subgen. Clavicarpa and subgen. Impatiens; the latter is further subdivided into seven sections.
  •  
7.
  • Zewdie, Beyene, 1983-, et al. (författare)
  • Genetic composition and diversity of Arabica coffee in the crop’s centre of origin and its impact on four major fungal diseases
  • 2023
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 32:10, s. 2484-2503
  • Tidskriftsartikel (refereegranskat)abstract
    • Conventional wisdom states that genetic variation reduces disease levels in plant populations. Nevertheless, crop species have been subject to a gradual loss of genetic variation through selection for specific traits during breeding, thereby increasing their vulnerability to biotic stresses such as pathogens. We explored how genetic variation in Arabica coffee sites in southwestern Ethiopia was related to the incidence of four major fungal diseases. Sixty sites were selected along a gradient of management intensity, ranging from nearly wild to intensively managed coffee stands. We used genotyping-by-sequencing of pooled leaf samples (pool-GBS) derived from 16 individual coffee shrubs in each of the 60 sites to assess the variation in genetic composition (multivariate: reference allele frequency) and genetic diversity (univariate: mean expected heterozygosity) between sites. We found that genetic composition had a clear spatial pattern and that genetic diversity was higher in less managed sites. The incidence of the four fungal diseases was related to the genetic composition of the coffee stands, but in a specific way for each disease. In contrast, genetic diversity was only related to the within-site variation of coffee berry disease, but not to the mean incidence of any of the four diseases across sites. Given that fungal diseases are major challenges of Arabica coffee in its native range, our findings that genetic composition of coffee sites impacted the major fungal diseases may serve as baseline information to study the molecular basis of disease resistance in coffee. Overall, our study illustrates the need to consider both host genetic composition and genetic diversity when investigating the genetic basis for variation in disease levels. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy