SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jennings Eleanor) "

Sökning: WFRF:(Jennings Eleanor)

  • Resultat 1-23 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ademuyiwa, Adesoji O., et al. (författare)
  • Determinants of morbidity and mortality following emergency abdominal surgery in children in low-income and middle-income countries
  • 2016
  • Ingår i: BMJ Global Health. - : BMJ Publishing Group Ltd. - 2059-7908. ; 1:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Child health is a key priority on the global health agenda, yet the provision of essential and emergency surgery in children is patchy in resource-poor regions. This study was aimed to determine the mortality risk for emergency abdominal paediatric surgery in low-income countries globally.Methods: Multicentre, international, prospective, cohort study. Self-selected surgical units performing emergency abdominal surgery submitted prespecified data for consecutive children aged <16 years during a 2-week period between July and December 2014. The United Nation's Human Development Index (HDI) was used to stratify countries. The main outcome measure was 30-day postoperative mortality, analysed by multilevel logistic regression.Results: This study included 1409 patients from 253 centres in 43 countries; 282 children were under 2 years of age. Among them, 265 (18.8%) were from low-HDI, 450 (31.9%) from middle-HDI and 694 (49.3%) from high-HDI countries. The most common operations performed were appendectomy, small bowel resection, pyloromyotomy and correction of intussusception. After adjustment for patient and hospital risk factors, child mortality at 30 days was significantly higher in low-HDI (adjusted OR 7.14 (95% CI 2.52 to 20.23), p<0.001) and middle-HDI (4.42 (1.44 to 13.56), p=0.009) countries compared with high-HDI countries, translating to 40 excess deaths per 1000 procedures performed.Conclusions: Adjusted mortality in children following emergency abdominal surgery may be as high as 7 times greater in low-HDI and middle-HDI countries compared with high-HDI countries. Effective provision of emergency essential surgery should be a key priority for global child health agendas.
  •  
2.
  • Golub, Malgorzata, et al. (författare)
  • A framework for ensemble modelling of climate change impacts on lakes worldwide : the ISIMIP Lake Sector
  • 2022
  • Ingår i: Geoscientific Model Development. - : Copernicus Publications. - 1991-959X .- 1991-9603. ; 15:11, s. 4597-4623
  • Tidskriftsartikel (refereegranskat)abstract
    • Empirical evidence demonstrates that lakes and reservoirs are warming across the globe. Consequently, there is an increased need to project future changes in lake thermal structure and resulting changes in lake biogeochemistry in order to plan for the likely impacts. Previous studies of the impacts of climate change on lakes have often relied on a single model forced with limited scenario-driven projections of future climate for a relatively small number of lakes. As a result, our understanding of the effects of climate change on lakes is fragmentary, based on scattered studies using different data sources and modelling protocols, and mainly focused on individual lakes or lake regions. This has precluded identification of the main impacts of climate change on lakes at global and regional scales and has likely contributed to the lack of lake water quality considerations in policy-relevant documents, such as the Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC). Here, we describe a simulation protocol developed by the Lake Sector of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) for simulating climate change impacts on lakes using an ensemble of lake models and climate change scenarios for ISIMIP phases 2 and 3. The protocol prescribes lake simulations driven by climate forcing from gridded observations and different Earth system models under various representative greenhouse gas concentration pathways (RCPs), all consistently bias-corrected on a 0.5 degrees x 0.5 degrees global grid. In ISIMIP phase 2, 11 lake models were forced with these data to project the thermal structure of 62 well-studied lakes where data were available for calibration under historical conditions, and using uncalibrated models for 17 500 lakes defined for all global grid cells containing lakes. In ISIMIP phase 3, this approach was expanded to consider more lakes, more models, and more processes. The ISIMIP Lake Sector is the largest international effort to project future water temperature, thermal structure, and ice phenology of lakes at local and global scales and paves the way for future simulations of the impacts of climate change on water quality and biogeochemistry in lakes.
  •  
3.
  • Woolway, R. Iestyn, et al. (författare)
  • Phenological shifts in lake stratification under climate change
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the most important physical characteristics driving lifecycle events in lakes is stratification. Already subtle variations in the timing of stratification onset and break-up (phenology) are known to have major ecological effects, mainly by determining the availability of light, nutrients, carbon and oxygen to organisms. Despite its ecological importance, historic and future global changes in stratification phenology are unknown. Here, we used a lake-climate model ensemble and long-term observational data, to investigate changes in lake stratification phenology across the Northern Hemisphere from 1901 to 2099. Under the high-greenhouse-gas-emission scenario, stratification will begin 22.0 +/- 7.0 days earlier and end 11.3 +/- 4.7 days later by the end of this century. It is very likely that this 33.3 +/- 11.7 day prolongation in stratification will accelerate lake deoxygenation with subsequent effects on nutrient mineralization and phosphorus release from lake sediments. Further misalignment of lifecycle events, with possible irreversible changes for lake ecosystems, is also likely.
  •  
4.
  •  
5.
  • Ayala, Ana I., et al. (författare)
  • Climate Change Impacts on Surface Heat Fluxes in a Deep Monomictic Lake
  • 2023
  • Ingår i: Journal of Geophysical Research - Atmospheres. - : American Geophysical Union (AGU). - 2169-897X .- 2169-8996. ; 128:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Turbulent and radiative energy exchanges between lakes and the atmosphere play an importantrole in determining the process of lake-mixing and stratification, including how lakes respond to climate andto climate change. Here we used a one-dimensional hydrodynamic lake model to assess seasonal impacts ofclimate change on individual surface heat flux components in Lough Feeagh, Ireland, a deep, monomictic lake.We drove the lake model with an ensemble of outputs from four climate models under three future greenhousegas scenarios from 1976 to 2099. In these experiments, the results showed significant increases in the radiativebudget that were largely counteracted by significant increases in the turbulent fluxes. The combined change inthe individual surface heat fluxes led to a change in the total surface heat flux that was small, but sufficient tolead to significant changes in the volume-weighted average lake temperature. The largest projected changes intotal surface heat fluxes were in spring and autumn. Both spring heating and autumnal cooling significantlydecreased under future climate conditions, while changes to total surface heat fluxes in winter and summerwere an order of magnitude lower. This led to counter-intuitive results that, in a warming world, there wouldbe less heat not more entering Lough Feeagh during the springtime, and little change in net heating over thesummer or winter compared to natural climate conditions, projected increases in the volume-weighted averagelake temperature were found to be largely due to reduced heat loss during autumn.
  •  
6.
  • Ayala, Ana I., et al. (författare)
  • GLOBAL WARMING WILL CHANGE THE THERMAL STRUCTURE OF LOUGH FEEAGH, A SENTINEL LAKE IN THE IRISH LANDSCAPE, BY THE END OF THE TWENTY-FIRST CENTURY
  • 2023
  • Ingår i: Biology and Environment (Dublin). - : Project MUSE/Royal irish academy. - 0791-7945 .- 2009-003X. ; 123B:3, s. 147-165
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent developments in impact modelling of global warming on lakes have resulted in a greater understanding of how these vital ecosystems are likely to respond. However, there has been little quantitative analysis of this in an Irish context, despite the importance of lakes in the island's landscape. Here, we explore the impact of global warming on the hydrodynamics and thermal structure of a sentinel Irish lake under future climate scenarios. A 1D lake model, Simstrat, was calibrated and validated using water temperature data collected from Lough Feeagh, a site of long-term ecological research in the west of Ireland. Once validated, the model was then driven by daily climate model projections to generate informative thermal metrics for the time period of 2006-2099. Despite the moderating influence of the Atlantic, projections indicate that global warming will have a marked effect on the thermal structure of Feeagh, with surface water temperatures set to warm by 0.75 degrees C under a more stringent mitigation pathway (RCP 2.6) and 2.42 degrees C under a non-mitigation pathway (RCP 8.5).While warming was projected to be greatest in summer in the epilimnion, winter warming was greater than in other seasons in the hypolimnion. Stratification is projected to become more stable and earlier, and the growing season to be longer by 11 to 47 days, depending on mitigation pathways. Future studies could use a similar modelling workflow to investigate the possible implications of global warming on other Irish lakes, particularly those of specific societal importance or those of conservation interest.
  •  
7.
  • Blenckner, Thorsten, et al. (författare)
  • Large-scale climatic signatures in lakes across Europe : A meta-analysis
  • 2007
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 13:7, s. 1314-1326
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies have highlighted the impact of the winter North Atlantic Oscillation (NAO) on water temperature, ice conditions, and spring plankton phenology in specific lakes and regions in Europe. Here, we use meta-analysis techniques to test whether 18 lakes in northern, western, and central Europe respond coherently to winter climate forcing, and to assess the persistence of the winter climate signal in physical, chemical, and biological variables during the year. A meta-analysis approach was chosen because we wished to emphasize the overall coherence pattern rather than individual lake responses. A particular strength of our approach is that time-series from each of the 18 lakes were subjected to the same robust statistical analysis covering the same 23-year period. Although the strongest overall coherence in response to the winter NAO was exhibited by lake water temperatures, a strong, coherent response was also exhibited by concentrations of soluble reactive phosphorus and soluble reactive silicate, most likely as a result of the coherent response exhibited by the spring phytoplankton bloom. Lake nitrate concentrations showed significant coherence in winter. With the exception of the cyanobacterial biomass in summer, phytoplankton biomass in all seasons was unrelated to the winter NAO. A strong coherence in the abundance of daphnids during spring can most likely be attributed to coherence in daphnid phenology. A strong coherence in the summer abundance of the cyclopoid copepods may have been related to a coherent change in their emergence from resting stages. We discuss the complex nature of the potential mechanisms that drive the observed changes.
  •  
8.
  • Jansen, Joachim, 1989-, et al. (författare)
  • Global increase in methane production under future warming of lake bottom waters
  • 2022
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 28:18, s. 5427-5440
  • Tidskriftsartikel (refereegranskat)abstract
    • Lakes are significant emitters of methane to the atmosphere, and thus are important components of the global methane budget. Methane is typically produced in lake sediments, with the rate of methane production being strongly temperature dependent. Local and regional studies highlight the risk of increasing methane production under future climate change, but a global estimate is not currently available. Here, we project changes in global lake bottom temperatures and sediment methane production rates from 1901 to 2099. By the end of the 21st century, lake bottom temperatures are projected to increase globally, by an average of 0.86-2.60 degrees C under Representative Concentration Pathways (RCPs) 2.6-8.5, with greater warming projected at lower latitudes. This future warming of bottom waters will likely result in an increase in methane production rates of 13%-40% by the end of the century, with many low-latitude lakes experiencing an increase of up to 17 times the historical (1970-1999) global average under RCP 8.5. The projected increase in methane production will likely lead to higher emissions from lakes, although the exact magnitude of the emission increase requires more detailed regional studies.
  •  
9.
  • Jennings, Eleanor, et al. (författare)
  • Effects of weather-related episodic events in lakes : an analysis based on high-frequency data
  • 2012
  • Ingår i: Freshwater Biology. - : Wiley. - 0046-5070 .- 1365-2427. ; 57:3, s. 589-601
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Weather-related episodic events are typically unpredictable, and their duration is often short. Abiotic and biological responses are often missed in routine monitoring. These responses are, however, now of particular relevance given projected changes in extreme weather conditions. 2. We present data from high-frequency monitoring stations from lakes in Europe, North America and Asia that illustrate two classes of abiotic effects of weather events: (i) generally short-lived effects of storms on lake thermal structure and (ii) the more prolonged effects of high rainfall events on dissolved organic matter levels and water clarity. We further relate these abiotic effects to changes in dissolved oxygen or in chlorophyll a levels. 3. Three differing causes for weather-related decreases in surface dissolved oxygen levels were observed: (i) entrainment of anoxic water from depth, (ii) reduction in primary productivity and (iii) increased mineralisation of organic carbon delivered from the catchment. 4. The duration of in-lake effects tended to be longer for events driven by weather conditions with a longer return period, that is, conditions that were relatively more severe and less frequent at a site. While the susceptibility of lakes to change was related in part to the severity of the meteorological drivers, the impacts also depended on site-specific factors in some cases. 5. The availability of high-frequency data at these sites provided insight into the capacity of the lakes to absorb current and future pressures. Several of the changes we observed, including increases in carbon availability, decreases in photosynthetically active radiation and increased disturbance, have the capacity to shift lakes towards an increased degree of heterotrophy. The magnitude and direction of any such change will, however, also depend on the magnitude and direction of climate change for a given location and on lake and catchment characteristics.
  •  
10.
  • Jennings, Eleanor, et al. (författare)
  • From Highs to Lows : Changes in Dissolved Organic Carbon in a Peatland Catchment and Lake Following Extreme Flow Events
  • 2020
  • Ingår i: Water. - : MDPI AG. - 2073-4441. ; 12:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The concentration of dissolved organic carbon (DOC) in freshwater catchments has implications for carbon availability in downstream lakes and for water supplies. The links between catchment hydrology and stream and lake DOC concentrations are, however, still not fully understood. Much of the literature has been from catchments with organo-mineral soils, with fewer studies from upland peat sites. We used high-frequency fluorescence data, a proxy for DOC, to investigate 1. the relationship between stream discharge and concentration in a blanket peat catchment during extreme high flows and 2. the relationship between inflow and in-lake estimated DOC concentrations. We found that for approximately two thirds of extreme events, there was a decrease in stream DOC concentration (i.e., a dilution) on the rising limb rather than an increase (i.e., a flushing out of DOC from terrestrial stores). Flushing events dominated only in summer when concentrations in the stream were also increasing. In comparison to the stream, concentrations in the downstream lake were less variable, and peaks and troughs were damped and lagged. Replicating these patterns and processes in DOC models would be critical in order to provide appropriate simulations in response to shorter- and longer-term changes in climate, and thus inform future catchment and lake management.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  • Marcé, Rafael, et al. (författare)
  • Automatic High Frequency Monitoring for Improved Lake and Reservoir Management
  • 2016
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 50:20, s. 10780-10794
  • Forskningsöversikt (refereegranskat)abstract
    • Recent technological developments have increased the number of variables being monitored in lakes and reservoirs using automatic high frequency monitoring (AHFM). However, design of AHFM systems and posterior data handling and interpretation are currently being developed on a site-by-site and issue-by-issue basis with minimal standardization of protocols or knowledge sharing. As a result, many deployments become short-lived or underutilized, and many new scientific developments that are potentially useful for water management and environmental legislation remain underexplored. This Critical Review bridges scientific uses of AHFM with their applications by providing an overview of the current AHFM capabilities, together with examples of successful applications. We review the use of AHFM for maximizing the provision of ecosystem services supplied by lakes and reservoirs (consumptive and non consumptive uses, food production, and recreation), and for reporting lake status in the EU Water Framework Directive. We also highlight critical issues to enhance the application of AHFM, and suggest the establishment of appropriate networks to facilitate knowledge sharing and technological transfer between potential users. Finally, we give advice on how modern sensor technology can successfully be applied on a larger scale to the management of lakes and reservoirs and maximize the ecosystem services they provide.
  •  
15.
  •  
16.
  • Pedregal-Montes, Angela, et al. (författare)
  • Disinfection by-product formation potential in response to variability in dissolved organic matter and nutrient inputs : Insights from a mesocosm study
  • 2024
  • Ingår i: Water Research. - Oxford : Elsevier. - 0043-1354 .- 1879-2448. ; 258
  • Tidskriftsartikel (refereegranskat)abstract
    • Changes in rainfall patterns driven by climate change affect the transport of dissolved organic matter (DOM) and nutrients through runoff to freshwater systems. This presents challenges for drinking water providers. DOM, which is a heterogeneous mix of organic molecules, serves as a critical precursor for disinfection by-products (DBPs) which are associated with adverse health effects. Predicting DBP formation is complex due to changes in DOM concentration and composition in source waters, intensified by altered rainfall frequency and intensity. We employed a novel mesocosm approach to investigate the response of DBP precursors to variability in DOM composition and inorganic nutrients, such as nitrogen and phosphorus, export to lakes. Three distinct pulse event scenarios, mimicking extreme, intermittent, and continuous runoff were studied. Simultaneous experiments were conducted at two boreal lakes with distinct DOM composition, as reflected in their color (brown and clear lakes), and bromide content, using standardized methods. Results showed primarily site-specific changes in DBP precursors, some heavily influenced by runoff variability. Intermittent and daily pulse events in the clear-water mesocosms exhibited higher haloacetonitriles (HANs) formation potential linked to freshly produced protein-like DOM enhanced by light availability. In contrast, trihalomethanes (THMs), associated with humic-like DOM, showed no significant differences between pulse events in the brown-water mesocosms. Elevated bromide concentration in the clear mesocosms critically influenced THMs speciation and concentrations. These findings contribute to understanding how changing precipitation patterns impact the dynamics of DBP formation, thereby offering insights for monitoring the mobilization and alterations of DBP precursors within catchment areas and lake ecosystems. © 2024 The Author(s)
  •  
17.
  • Read, Jordan S., et al. (författare)
  • Generating community-built tools for data sharing and analysis in environmental networks
  • 2016
  • Ingår i: Inland Waters. - 2044-2041 .- 2044-205X. ; 6:4, s. 637-644
  • Tidskriftsartikel (refereegranskat)abstract
    • Rapid data growth in many environmental sectors has necessitated tools to manage and analyze these data. The development of tools often lags behind the proliferation of data, however, which may slow exploratory opportunities and scientific progress. The Global Lake Ecological Observatory Network ( GLEON) collaborative model supports an efficient and comprehensive data-analysis-insight life cycle, including implementations of data quality control checks, statistical calculations/derivations, models, and data visualizations. These tools are community-built and openly shared. We discuss the network structure that enables tool development and a culture of sharing, leading to optimized output from limited resources. Specifically, data sharing and a flat collaborative structure encourage the development of tools that enable scientific insights from these data. Here we provide a cross-section of scientific advances derived from global-scale analyses in GLEON. We document enhancements to science capabilities made possible by the development of analytical tools and highlight opportunities to expand this framework to benefit other environmental networks.
  •  
18.
  • Ryder, Elizabeth, et al. (författare)
  • Reply to a comment by Watras et al. (2014) on temperature compensation method for field measurements of CDOM fluorescence
  • 2015
  • Ingår i: Limnology and Oceanography. - : Wiley. - 1541-5856. ; 13:10, s. 527-528
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent comment by Watras et al. (2014) clarifies the calculation of the temperature correction coefficient (rho) in Watras et al. (2011). Based on this clarification, we accept that the equation to compensate for temperature quenching of chromophoric dissolved organic matter (CDOM) fluorescence presented in Ryder et al. (2012) and the equation proposed in Watras et al. (2011) are mathematically equivalent.
  •  
19.
  • Ryder, Elizabeth, et al. (författare)
  • Temperature quenching of CDOM fluorescence sensors : temporal and spatial variability in the temperature response and a recommended temperature correction equation
  • 2012
  • Ingår i: Limnology and Oceanography. - : Wiley. - 1541-5856. ; 10, s. 1004-1010
  • Tidskriftsartikel (refereegranskat)abstract
    • Field-based instruments measuring chromophoric dissolved organic matter (CDOM) fluorescence are often used as a proxy for dissolved organic carbon concentrations in lakes and streams. CDOM fluorescence yield is, however, affected by water temperature at the time of measurement, a factor which varies on both diel and seasonal timescales. A temperature correction must therefore be applied to these data. We present data on temporal and site-specific variability in temperature quenching of CDOM fluorescence for water from a humic lake and one of its main inflows in the west of Ireland. In addition, we present a temperature compensation equation and show that this equation is an improvement on methods previously proposed.
  •  
20.
  • Seifert-Dähnn, Isabel, et al. (författare)
  • Costs and benefits of automated high-frequency environmental monitoring - The case of lake water management
  • 2021
  • Ingår i: Journal of Environmental Management. - : Elsevier. - 0301-4797 .- 1095-8630. ; 285
  • Tidskriftsartikel (refereegranskat)abstract
    • Freshwater lakes are dynamic ecosystems and provide multiple ecosystem services to humans. Sudden changes in lake environmental conditions such as cyanobacterial blooms can negatively impact lake usage. Automated high frequency monitoring (AHFM) systems allow the detection of short-lived extreme and unpredictable events and enable lake managers to take mitigation actions earlier than if basing decisions on conventional monitoring programmes. In this study a cost-benefit approach was used to compare the costs of implementing and running an AHFM system with its potential benefits for three case study lakes. It was shown that AHFM can help avoid human health impacts, lost recreation opportunities, and revenue losses for livestock, aquaculture and agriculture as well as reputational damages for drinking water treatment. Our results showed that the largest benefits of AHFM can be expected in prevention of human health impacts and reputational damages. The potential benefits of AHFM, however, do not always outweigh installation and operation costs. While for Lake Kinneret (Israel) over a 10-year period, the depreciated total benefits are higher than the depreciated total costs, this is not the case for Lough Gara (Ireland). For Lake Ma?laren in Sweden it would depend on the configuration of the AHFM system, as well as on how the benefits are calculated. In general, the higher the frequency and severity of changes in lake environmental conditions associated with detrimental consequences for humans and the higher the number of lake users, the more likely it is that the application of an AHFM system is financially viable.
  •  
21.
  • Tiegs, Scott D., et al. (författare)
  • Global patterns and drivers of ecosystem functioning in rivers and riparian zones
  • 2019
  • Ingår i: Science Advances. - Washington : American Association of Advancement in Science. - 2375-2548. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.
  •  
22.
  • Weyhenmeyer, Gesa A., et al. (författare)
  • Nitrate-depleted conditions on the increase in shallow northern European lakes
  • 2007
  • Ingår i: Limnology and Oceanography. - 0024-3590 .- 1939-5590. ; 52:4, s. 1346-1353
  • Tidskriftsartikel (refereegranskat)abstract
    • We determined relative nitrate-nitrogen (NO3- N) loss rates in 100 north-mid-European lakes from late spring to summer by using the exponential function N-2 5 N-1e(-k)( (t)(2) - (t)(2)), where N-1 and N-2 are NO3- N concentrations at the beginning (t(1)) and the end (t(2)) of the time interval, respectively, and k is the specific NO3- N loss rate. We found that k decreased with increasing lake depth. Adjusting k to the lake depth (k(adj)), we observed that k(adj) was positively related to spring NO3-N concentrations, but this relationship became insignificant at mean lake depths exceeding 12.5 m. A relationship between k(adj) and spring NO3- N concentrations in lakes shallower than 12.5 m implies that changes in spring NO3-N concentrations influence the NO3- N loss rate and thereby summer NO3- N concentrations. Time series from one Estonian, one German, and 14 Swedish lakes shallower than 12.5 m since 1988 revealed that May to August NO3-N concentrations have decreased over time everywhere, and the number of time periods exhibiting a NO3-N depleted condition, i.e., NO3-N levels below 10 mu g L-1, in these lakes has tripled since 1988. We explained the decreasing NO3-N concentrations by a reduction in external nitrogen loading including atmospheric deposition, and by changes in climate. The observed prolongation of NO3- N depleted conditions might be one possible explanation for the increasing occurrence of nitrogen- fixing cyanobacteria in a variety of lake ecosystems.
  •  
23.
  • Woolway, R. Iestyn, et al. (författare)
  • Lake heatwaves under climate change
  • 2021
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 589:7842, s. 402-407
  • Tidskriftsartikel (refereegranskat)abstract
    • Lake ecosystems, and the organisms that live within them, are vulnerable to temperature change(1-5), including the increased occurrence of thermal extremes(6). However, very little is known about lake heatwaves-periods of extreme warm lake surface water temperature-and how they may change under global warming. Here we use satellite observations and a numerical model to investigate changes in lake heatwaves for hundreds of lakes worldwide from 1901 to 2099. We show that lake heatwaves will become hotter and longer by the end of the twenty-first century. For the high-greenhouse-gas-emission scenario (Representative Concentration Pathway (RCP) 8.5), the average intensity of lake heatwaves, defined relative to the historical period (1970 to 1999), will increase from 3.7 +/- 0.1 to 5.4 +/- 0.8 degrees Celsius and their average duration will increase dramatically from 7.7 +/- 0.4 to 95.5 +/- 35.3 days. In the low-greenhouse-gas-emission RCP 2.6 scenario, heatwave intensity and duration will increase to 4.0 +/- 0.2 degrees Celsius and 27.0 +/- 7.6 days, respectively. Surface heatwaves are longer-lasting but less intense in deeper lakes (up to 60 metres deep) than in shallower lakes during both historic and future periods. As lakes warm during the twenty-first century(7,8), their heatwaves will begin to extend across multiple seasons, with some lakes reaching a permanent heatwave state. Lake heatwaves are likely to exacerbate the adverse effects of long-term warming in lakes and exert widespread influence on their physical structure and chemical properties. Lake heatwaves could alter species composition by pushing aquatic species and ecosystems to the limits of their resilience. This in turn could threaten lake biodiversity(9) and the key ecological and economic benefits that lakes provide to society.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-23 av 23
Typ av publikation
tidskriftsartikel (18)
bokkapitel (3)
annan publikation (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (18)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Jennings, Eleanor (22)
De Eyto, Elvira (10)
Weyhenmeyer, Gesa A. (8)
Pierson, Don (7)
Arvola, Lauri (7)
Nõges, Tiina (6)
visa fler...
Marce, Rafael (5)
Adrian, Rita (4)
Blenckner, Thorsten (4)
George, Glen (4)
Järvinen, Marko (4)
Pierson, Donald C. (4)
Moore, Karen (4)
Golub, Malgorzata (4)
Woolway, R. Iestyn (3)
Straile, Dietmar (3)
Jones, Ian D. (3)
Shatwell, Tom (3)
Thiery, Wim (3)
Ryder, Elizabeth (3)
Grant, Luke (3)
Perroud, Marjorie (3)
Dillane, Mary (3)
Dokulil, Martin T. (2)
Rusak, James A. (2)
Livingstone, David M ... (2)
Sharma, Sapna (2)
Grossart, Hans-Peter (2)
Aonghusa, Caitriona ... (2)
Nõges, Peeter (2)
Staehr, Peter A. (2)
Ayala, Ana I. (2)
Goyette, Stéphane (2)
Pierson, Don C (2)
Jeppesen, Erik (2)
Jankowski, Thomas (2)
Gal, Gideon (2)
Rinke, Karsten (2)
Weathers, Kathleen C ... (2)
Ladwig, Robert (2)
Moore, Tadhg N. (2)
Vanderkelen, Inne (2)
Mercado-Bettin, Dani ... (2)
Kraemer, Benjamin M. (2)
Moore, Tadhg (2)
Tan, Zeli (2)
Mackay, Eleanor B. (2)
La Fuente, Sofia (2)
Allott, Norman (2)
Nic Aonghusa, Caitri ... (2)
visa färre...
Lärosäte
Uppsala universitet (20)
Umeå universitet (2)
Stockholms universitet (2)
Sveriges Lantbruksuniversitet (2)
Högskolan i Halmstad (1)
Linköpings universitet (1)
visa fler...
Karolinska Institutet (1)
visa färre...
Språk
Engelska (22)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (20)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy