SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jensen Anna M. 1978 ) "

Sökning: WFRF:(Jensen Anna M. 1978 )

  • Resultat 1-19 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Griffiths, Natalie A., et al. (författare)
  • Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment
  • 2017
  • Ingår i: Soil Science Society of America Journal. - : ACSESS. - 0361-5995 .- 1435-0661. ; 81:6, s. 1668-1688
  • Tidskriftsartikel (refereegranskat)abstract
    • We are conducting a large-scale, long-term climate change response experiment in an ombrotrophic peat bog in Minnesota to evaluate the effects of warming and elevated CO2 on ecosystem processes using empirical and modeling approaches. To better frame future assessments of peatland responses to climate change, we characterized and compared spatial vs. temporal variation in measured C cycle processes and their environmental drivers. We also conducted a sensitivity analysis of a peatland C model to identify how variation in ecosystem parameters contributes to model prediction uncertainty. High spatial variability in C cycle processes resulted in the inability to determine if the bog was a C source or sink, as the 95% confidence interval ranged from a source of 50 g C m(-2) yr(-1) to a sink of 67 g C m(-2) yr(-1). Model sensitivity analysis also identified that spatial variation in tree and shrub photosynthesis, allocation characteristics, and maintenance respiration all contributed to large variations in the pretreatment estimates of net C balance. Variation in ecosystem processes can be more thoroughly characterized if more measurements are collected for parameters that are highly variable over space and time, and especially if those measurements encompass environmental gradients that may be driving the spatial and temporal variation (e.g., hummock vs. hollow microtopographies, and wet vs. dry years). Together, the coupled modeling and empirical approaches indicate that variability in C cycle processes and their drivers must be taken into account when interpreting the significance of experimental warming and elevated CO2 treatments.
  •  
2.
  • Jensen, Anna M., 1978-, et al. (författare)
  • Simulated projections of boreal forest peatland ecosystem productivity are sensitive to observed seasonality in leaf physiology
  • 2019
  • Ingår i: Tree Physiology. - : Oxford University Press. - 0829-318X .- 1758-4469. ; 39:4, s. 556-572
  • Tidskriftsartikel (refereegranskat)abstract
    • We quantified seasonal CO2 assimilation capacities for seven dominant vascular species in a wet boreal forest peatland then applied data to a land surface model parametrized to the site (ELM-SPRUCE) to test if seasonality in photosynthetic parameters results in differences in simulated plant responses to elevated CO2 and temperature. We collected seasonal leaf-level gas exchange, nutrient content and stand allometric data from the field-layer community (i.e., Maianthemum trifolium (L.) Sloboda), understory shrubs (Rhododendron groenlandicum (Oeder) Kron and Judd, Chamaedaphne calyculata (L.) Moench., Kalmia polifolia Wangenh. and Vaccinium angustifolium Alton.) and overstory trees (Picea mariana (Mill.) B.S.P. and Larix laricina (Du Roi) K. Koch). We found significant interspecific seasonal differences in specific leaf area, nitrogen content (by area; Na) and photosynthetic parameters (i.e., maximum rates of Rubisco carboxylation (Vcmax25°C), electron transport (Jmax25°C) and dark respiration (Rd25°C)), but minimal correlation between foliar Na and Vcmax25°C, Jmax25°C or Rd25°C, which illustrates that nitrogen alone is not a good correlate for physiological processes such as Rubisco activity that can change seasonally in this system. ELM-SPRUCE was sensitive to the introduction of observed interspecific seasonality in Vcmax25°C, Jmax25°C and Rd25°C, leading to simulated enhancement of net primary production (NPP) using seasonally dynamic parameters as compared with use of static parameters. This pattern was particularly pronounced under simulations with higher temperature and elevated CO2, suggesting a key hypothesis to address with future empirical or observational studies as climate changes. Inclusion of species-specific seasonal photosynthetic parameters should improve estimates of boreal ecosystem-level NPP, especially if impacts of seasonal physiological ontogeny can be separated from seasonal thermal acclimation.
  •  
3.
  • Kumarathunge, Dushan P., et al. (författare)
  • Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale
  • 2019
  • Ingår i: New Phytologist. - : John Wiley & Sons. - 0028-646X .- 1469-8137. ; 222:2, s. 768-784
  • Tidskriftsartikel (refereegranskat)abstract
    • The temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperature. Our goal was to develop a robust quantitative global model representing acclimation and adaptation of photosynthetic temperature responses.We quantified and modelled key mechanisms responsible for photosynthetic temperature acclimation and adaptation using a global dataset of photosynthetic CO2 response curves, including data from 141 C3 species from tropical rainforest to Arctic tundra. We separated temperature acclimation and adaptation processes by considering seasonal and common-garden datasets, respectively.The observed global variation in the temperature optimum of photosynthesis was primarily explained by biochemical limitations to photosynthesis, rather than stomatal conductance or respiration. We found acclimation to growth temperature to be a stronger driver of this variation than adaptation to temperature at climate of origin.We developed a summary model to represent photosynthetic temperature responses and showed that it predicted the observed global variation in optimal temperatures with high accuracy. This novel algorithm should enable improved prediction of the function of global ecosystems in a warming climate.
  •  
4.
  • Nyberg, Lars, 1966-, et al. (författare)
  • Individual differences in brain aging : heterogeneity in cortico-hippocampal but not caudate atrophy rates
  • 2023
  • Ingår i: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 33:9, s. 5075-5081
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well documented that some brain regions, such as association cortices, caudate, and hippocampus, are particularly prone to age-related atrophy, but it has been hypothesized that there are individual differences in atrophy profiles. Here, we document heterogeneity in regional-atrophy patterns using latent-profile analysis of 1,482 longitudinal magnetic resonance imaging observations. The results supported a 2-group solution reflecting differences in atrophy rates in cortical regions and hippocampus along with comparable caudate atrophy. The higher-atrophy group had the most marked atrophy in hippocampus and also lower episodic memory, and their normal caudate atrophy rate was accompanied by larger baseline volumes. Our findings support and refine models of heterogeneity in brain aging and suggest distinct mechanisms of atrophy in striatal versus hippocampal-cortical systems.
  •  
5.
  • Gad, Helge, et al. (författare)
  • MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool
  • 2014
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 508:7495, s. 215-221
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancers have dysfunctional redox regulation resulting in reactive oxygen species production, damaging both DNA and free dNTPs. The MTH1 protein sanitizes oxidized dNTP pools to prevent incorporation of damaged bases during DNA replication. Although MTH1 is non-essential in normal cells, we show that cancer cells require MTH1 activity to avoid incorporation of oxidized dNTPs, resulting in DNA damage and cell death. We validate MTH1 as an anticancer target in vivo and describe small molecules TH287 and TH588 as first-in-class nudix hydrolase family inhibitors that potently and selectively engage and inhibit the MTH1 protein in cells. Protein co-crystal structures demonstrate that the inhibitors bindin the active site of MTH1. The inhibitors cause incorporation of oxidized dNTPs in cancer cells, leading to DNA damage, cytotoxicity and therapeutic responses in patient-derived mouse xenografts. This study exemplifies the non-oncogene addiction concept for anticancer treatment and validates MTH1 as being cancer phenotypic lethal.
  •  
6.
  • Jensen, Anna M., 1978-, et al. (författare)
  • Springtime Drought Shifts Carbon Partitioning of Recent Photosynthates in 10-Year Old Picea mariana Trees, Causing Restricted Canopy Development
  • 2021
  • Ingår i: Frontiers in Forests and Global Change. - : Frontiers Media S.A.. - 2624-893X. ; 3, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Springtime bud-break and shoot development induces substantial carbon (C) costs in trees. Drought stress during shoot development can impede C uptake and translocation. This is therefore a channel through which water shortage can lead to restricted shoot expansion and physiological capacity, which in turn may impact annual canopy C uptake. We studied effects of drought and re-hydration on early season shoot development, C uptake and partitioning in five individual 10-year old Picea mariana [black spruce] trees to identify and quantify dynamics of key morphological/physiological processes. Trees were subjected to one of two treatments: (i) well-watered control or (ii) drought and rehydration. We monitored changes in morphological [shoot volume, leaf mass area (LMA)], biochemical [osmolality, non-structural carbohydrates (NSC)] and physiological [rates of respiration (Rd) and light-saturated photosynthesis (Asat)] processes during shoot development. Further, to study functional compartmentalization and use of new assimilates, we 13C-pulse labeled shoots at multiple development stages, and measured isotopic signatures of leaf respiration, NSC pools and structural biomass. Shoot water potential dropped to a minimum of −2.5 MPa in shoots on the droughted trees. Development of the photosynthetic apparatus was delayed, as shoots on well-watered trees broke-even 14 days prior to shoots from trees exposed to water deficit. Rd decreased with shoot maturation as growth respiration declined, and was lower in shoots exposed to drought. We found that shoot development was delayed by drought, and while rehydration resulted in recovery of Asat to similar levels as shoots on the well-watered trees, shoot volume remained lower. Water deficit during shoot expansion resulted in longer, yet more compact (i.e., with greater LMA) shoots with greater needle osmolality. The 12C:13C isotopic patterns indicated that internal C partitioning and use was dependent on foliar developmental and hydration status. Shoots on drought-stressed trees prioritized allocating newly fixed C to respiration over structural components. In conclusion, temporary water deficit delayed new shoot development and resulted in greater LMA in black spruce. Since evergreen species such as black spruce retain active foliage for multiple years, impacts of early season drought on net primary productivity could be carried forward into subsequent years.
  •  
7.
  • Ræbild, Anders, et al. (författare)
  • Polyploidy – A tool in adapting trees to future climate changes? A review of polyploidy in trees
  • 2024
  • Ingår i: Forest Ecology and Management. - : Elsevier. - 0378-1127 .- 1872-7042. ; 560, s. 121767-121767
  • Forskningsöversikt (refereegranskat)abstract
    • Polyploidy, or genome doubling, has occurred repeatedly through plant evolution. While polyploid plants are used extensively in agriculture and horticulture, they have so far found limited use in forestry. Here we review the potentials of polyploid trees under climate change, and investigate if there is support for increased use. We find that polyploid trees like other plants have consistent increases in cell sizes compared to diploids, and that leaf-area based rates of photosynthesis tend to increase with increasing levels of ploidy. While no particular trend could be discerned in terms of biomass between trees of different ploidy levels, physiology is affected by polyploidization and several studies point towards a high potential for polyploid trees to adapt to drought stress. The ploidy level of most tree species is unknown, and analysis of geographical patterns in frequencies of polyploid trees are inconclusive. Artificial polyploid trees are often created by colchicine and in a few cases these have been successfully applied in forestry, but the effects of induced polyploidization in many economically important tree species remains untested. Polyploids would also be increasingly useful in tree breeding programs, to create synthetic hybrids or sterile triploids that could control unwanted spreading of germplasm in nature. In conclusion, this review suggests that polyploid trees may be superior under climate change in some cases, but that the potential of polyploids is not yet fully known and should be evaluated on a case-to-case basis for different tree species.
  •  
8.
  • Warren, Jeffrey M., et al. (författare)
  • Divergent species-specific impacts of whole ecosystem warming and elevated CO2 on vegetation water relations in an ombrotrophic peatland
  • 2021
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 27, s. 1820-1835
  • Tidskriftsartikel (refereegranskat)abstract
    • Boreal peatland forests have relatively low species diversity and thus impacts of climate change on one or more dominant species could shift ecosystem function. Despite abundant soil water availability, shallowly rooted vascular plants within peatlands may not be able to meet foliar demand for water under drought or heat events that increase vapor pressure deficits while reducing near surface water availability, although concurrent increases in atmospheric CO2 could buffer resultant hydraulic stress. We assessed plant water relations of co-occurring shrub (primarily Rhododendron groenlandicum and Chamaedaphne calyculata) and tree (Picea mariana and Larix laricina) species prior to, and in response to whole ecosystem warming (0 to +9 degrees C) and elevated CO2 using 12.8-m diameter open-top enclosures installed within an ombrotrophic bog. Water relations (water potential [psi], turgor loss point, foliar and root hydraulic conductivity) were assessed prior to treatment initiation, then psi and peak sap flow (trees only) assessed after 1 or 2 years of treatments. Under the higher temperature treatments, L. laricina psi exceeded its turgor loss point, increased its peak sap flow, and was not able to recover psi overnight. In contrast, P. mariana operated below its turgor loss point and maintained constant psi and sap flow across warming treatments. Similarly, C. calyculata psi stress increased with temperature while R. groenlandicum psi remained at pretreatment levels. The more anisohydric behavior of L. laricina and C. calyculata may provide greater net C uptake with warming, while the more conservative P. mariana and R. groenlandicum maintained greater hydraulic safety. These latter species also responded to elevated CO2 by reduced psi stress, which may also help limit hydraulic failure during periods of extreme drought or heat in the future. Along with Sphagnum moss, the species-specific responses of peatland vascular communities to drier or hotter conditions will shape boreal peatland composition and function in the future.
  •  
9.
  • Eckert, Diana, et al. (författare)
  • CO2 refixation is higher in leaves of woody species with high mesophyll and stomatal resistances to CO2 diffusion
  • 2021
  • Ingår i: Tree Physiology. - : Oxford University Press. - 0829-318X .- 1758-4469. ; 41:8, s. 1450-1461
  • Tidskriftsartikel (refereegranskat)abstract
    • The percentage of respiratory and photorespiratory CO2 refixed in leaves (P-r) represents part of the CO2 used in photosynthesis. The importance of P-r as well as differences between species and functional types are still not well investigated. In this study, we examine how P-r differs between six temperate and boreal woody species: Betula pendula, Quercus robur, Larix decidua, Pinus sylvestris, Picea abies and Vaccinium vitis-idaea. The study covers early and late successional species, deciduous broadleaves, deciduous conifers, evergreen conifers and evergreen broadleaves. We investigated whether some species or functional types had higher refixation percentages than others, whether leaf traits could predict higher P-r and whether these traits and their impact on P-r changed during growing seasons. Photosynthesis CO2 response (A/C-i)-curves, measured early, mid and late season, were used to estimate and compare P-r, mesophyll resistance (r(m)) and stomatal resistance (r(s)) to CO2 diffusion. Additionally, light images and transmission electron microscope images were used to approximate the fraction of intercellular airspace and cell wall thickness. We found that evergreens, especially late successional species, refixed a significantly higher amount of CO2 than the other species throughout the entire growing season. In addition, r(m), r(s) and leaf mass per area, traits that typically are higher in evergreen species, were also significantly, positively correlated with P-r. We suggest that this is due to higher r(m) decreasing diffusion of (photo) respiratory CO2 out of the leaf. Cell wall thickness had a positive effect on P-r and r(m), while the fraction of intercellular airspace had no effect. Both were significantly different between evergreen conifers and other types. Our findings suggest that species with a higher r(m) use a greater fraction of mitochondria-derived CO2, especially when stomatal conductance is low. This should be taken into account when modeling the overall CO2 fertilization effect for terrestrial ecosystems dominated by high r(m) species.
  •  
10.
  • Eckert, Diana (författare)
  • Refixation of respiratory CO2 in leaves
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Photosynthesis is a vital process for trees, one in which CO2 plays a major role. At the same time, the tree’s own metabolism produces CO2. For this PhD thesis, I investigated the fate of respiratory CO2 – is it all released back into the atmosphere or is it re-used in photosynthesis? The new LeafWeb-model uses gas exchange measurements of leaves to estimate the percentage of respiratory CO2 that is being refixed in photosynthesis (Pr). This thesis examined the effectson Pr of physiological, anatomical, and morphological traits; those of light availability and temperature; and Pr variations between species, functional groups or biomes. In addition, an experimental study explored the effect of drought on carbon allocation, which implied potential advantages of high Pr.I found that Pr is increased with high mesophyll resistance to CO2 diffusion (rm), high maximum carboxylation rate of Rubisco (Vcmax), and low stomatal conductance to CO2 diffusion (gs). This suggests that these physiological states slow CO2 diffusion out of the leaf (high rm and low gs) while increasing the draw on CO2 at the photosynthetic sites (high Vcmax). Thus, all three increase refixation probability. High leaf mass per area (LMA) and thick cell walls, traits known to correlate positively with rm, also increased refixation. The fact that both morphological and anatomical traits that are known to correlate with high rm also correlated with high Pr in my findings supports the assumption of the model regarding the relationship between Pr and rm. Furthermore, Pr increasing with rm is likely the reason Pr was highest in evergreen needle species and in the boreal biomes where this trait is prevalent. Species with high Pr might be less dependent on uptake of atmospheric CO2 and can close more of their stomata to conserve water. Models calculating terrestrial CO2-uptake should therefore consider including Pr, and assume that plants with high rm and high Vcmax refixate most of their (photo)respiratory-derived CO2.The thesis also includes a study that found that drought during early development of P.mariana shoots affected carbon partitioning and shoot morphology. The shoots allocated carbon away from structural components andtowards respiratory or osmoregulation processes. This might result in mature shoots with lower rm, which could reduce their Pr permanently. High Pr couldbe an advantage in conditions where stomata are closed; efficiently reusing(photo)respiratory CO2 during winter or mild drought could make it possible to maintain some photosynthesis even with very low gs. If this is true, new shoots with less efficient refixation might make the tree as a whole less resilient during future droughts. A possible implication is that while the higher Pr of boreal biomes and evergreen conifers may make them better able to tolerate future dry-periods, such periods may weaken this effect if they happen during shoot development.  
  •  
11.
  • Eckert, Diana, et al. (författare)
  • The maximum carboxylation rate of Rubisco affects CO2 refixation in temperate broadleaved forest trees
  • 2020
  • Ingår i: Plant physiology and biochemistry (Paris). - : Elsevier. - 0981-9428 .- 1873-2690. ; 155, s. 330-337
  • Tidskriftsartikel (refereegranskat)abstract
    • Mesophyll resistance to CO2 diffusion (rm) and the maximum carboxylation rate of Rubisco (Vcmax) affect photosynthetic rates, and can potentially also influence the percentage of respiratory and photorespiratory CO2 being refixated (Pr) by mesophyll cells. Here we investigated how various leaf anatomical traits (e.g. leaf mass per area [LMA] and leaf dry matter content [LDMC]) influenced rm in leaves of mature forest trees. We further explored how rm and Vcmax in turn affected Pr, and if these traits varied among species and leaves along a light gradient. Photosynthetic CO2 response of leaves grown in high-, medium-, and low-light environments was measured, from Pinus sylvestris [Scots pine], Picea abies [Norway spruce], Quercus robur [English oak], and Betula pendula [Silver birch] in southern Sweden. A modified version of the Farquhar-von Caemmerer-Berry model was fitted to the leaf gas exchange data to estimate Vcmax, rm and Pr. We found that of all leaf traits measured, only LMA for Q. robur was significantly higher in leaves from high-light environments. When comparing species, both rm and LMA were significantly higher in the conifers, and rm had a negative correlation with Vcmax. We found that Pr was similar between different species and functional groups, with an average of 73.2% (and SD of ±10.4) across all species. There was a strong, positive correlation between Pr and Vcmax in broadleaves, and we hypothesise that this effect might derive from a higher CO2 drawdown near Rubisco in leaves with high Vcmax.
  •  
12.
  • Furze, Morgan E., et al. (författare)
  • Seasonal patterns of nonstructural carbohydrate reserves in four woody boreal species
  • 2018
  • Ingår i: Journal of the Torrey Botanical Society. - 1095-5674 .- 1940-0616. ; 145:4, s. 332-339
  • Tidskriftsartikel (refereegranskat)abstract
    • Plants store nonstructural carbohydrates (NSCs), such as sugars and starch, to use as carbon and energy sources for daily maintenance and growth needs as well as during times of stress. Allocation of NSCs to storage provides an important physiological strategy associated with future growth and survival, and thus understanding the seasonal patterns of NSC reserves provides insight into how species with different traits (e.g., growth form, leaf habit, wood anatomy) may respond to stress. We characterized the seasonal patterns of NSCs in four woody boreal plant species in Minnesota, USA. Sugar and starch concentrations were measured across the year in the roots and branches of two conifer trees, black spruce (Picea mariana (Mill.) B.S.P.) and eastern tamarack (Larix laricina (Du Roi) K. Koch), as well as in the leaves and branches of two evergreen broadleaf shrubs, bog Labrador tea (Rhododendron groenlandicum (Oeder) Kron & Judd) and leatherleaf (Chamaedaphne calyculata (L.) Moench). In general, seasonal variation was dominated by changes in starch across all organs and species. While similar seasonal patterns of NSCs were observed in the shrubs, different seasonal patterns were observed between the trees, particularly in the roots. Our results suggest that species-specific traits likely have consequences for organ-level storage dynamics, which may influence whole-plant growth and survival under global change
  •  
13.
  • Håkansson, Charlotta, 1971- (författare)
  • Greenhouse Gas Fluxes and Carbon Sequestration in Young Norway Spruce Stands : The Effects of Fertilization
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The enormous challenge of climate change is discussed and debated today because of its major impact on life on Earth. The forests have an important role to play as the plants absorb carbon dioxide (CO2) from the atmosphere through their photosynthesis and the growing tree retain carbon (C). Hence, the larger the growth the greater the carbon storage and climate benefit. The demand for wood and wood products is increasing as well as the ongoing debate about forest management. Therefore, alternative management methods to increase wood production is of interest and the effects these methods could have on climate change mitigation. In this context this Thesis deals with the effect of fertilization on carbon balance and growth in young forest as well as flows of the greenhouse gases, CO2, methane (CH4), and nitrous oxide (N2O) from forest land. In addition, it deals also with the reliability and comparability of different measurement methods which are compared with respect to the carbon balance.The studies have been carried out in a young mixed stand of Norway spruce (Picea abies (L.) Karst) and birch (Betula pendula and B.pubescens) on a storm-felled (Gudrun 2005) area in southern Sweden, Kronoberg county. Part of the area was fertilized with 150 kg N ha-1 everysecond year from 2014 and forward, while the other part was kept unfertilized. In the unfertilized part a dose experiment was set up where 0,150, 300, and 450 kg N ha-1 were added to investigate the impact of the different fertilizer levels on forest floor greenhouse gas fluxes. Chamber measurements of forest floor fluxes, eddy-flux measurements of stand net-fluxes and tree measurements of height, diameter and birch leaf biomass were conducted in different, occasionally overlapping, periods in the years 2013-2021.The results show that even if the flows of CO2 from the forest floor increase initially after a first standard fertilization, the effect decreases quickly. The net fluxes show that the stands become carbon sinks already eight years after the storm with a net uptake of about 18 ton CO2 ha-1 yr-1 of. The forest floor fluxes of CH4 and N2O also show a short-term effect of fertilization, however the levels are very low compared to CO2. The fertilization induced increase of total tree biomass growth increased with time. The results show that 12 and 15 years after regeneration, the fertilization compared to the control has increased the tree growth by 3.4 and 6.3 m3 ha-1 yr-1 and carbon storage by 4.7 and 8.7 ton C ha-1 yr-1 respectively.Comparison of measurement results of the Eddy-flux technique's netflows and chamber measurements of soil respiration together with tree growth shows the importance of calibrating the measurement methods when the results are later to be used in modeling future climate scenarios.
  •  
14.
  • Jensen, Anna M., 1978-, et al. (författare)
  • Att mäta skog
  • 2019
  • Bok (refereegranskat)
  •  
15.
  • Jensen, Anna M., 1978-, et al. (författare)
  • High-light acclimation in Quercus robur L. seedlings upon over-topping a shaded environment.
  • 2012
  • Ingår i: Environmental and Experimental Botany. - : Elsevier. - 0098-8472 .- 1873-7307. ; 78, s. 25-32
  • Tidskriftsartikel (refereegranskat)abstract
    • High developmental plasticity at the seedling-level during acclimation to the light environment may be an important determinant of seedling establishment and growth in temperate broadleaf forests, especially in dense understories where spatial light availability can vary greatly. Pedunculate oak (Quercus robur L.) seedlings were raised beneath a range of artificial light environments (high light, partial high light and low light) to examine morphological and photosynthetic acclimation to vertically stratified light availability. Acclimation observed at the seedling level included changes in proportional distribution of biomass and leaf area ratio to enhance either light gathering under low light availability or reduction of moisture stress under high light availability. Seedling-level acclimation was partially driven by plasticity at the flush level, but plasticity of traits determining flush morphology, such as leaf number, area, and mass, was largely controlled during bud formation rather than during shoot development. Therefore, flush-level acclimation was restricted when shoots elongated from a shaded environment into a high light environment. In contrast, traits influencing leaf-level acclimation, such as leaf thickness, specific leaf area, and pigment concentrations appeared to be driven primarily by the prevailing light environment during leaf development. The plastic response in leaf traits to light environments during shoot development enabled immediate acclimation of photosynthetic capacity to the prevailing light environment. In conclusion, oak seedlings displayed a large phenotypical plasticity on multiple levels that maximized whole seedling performance.
  •  
16.
  •  
17.
  • Jensen, M., et al. (författare)
  • Finite element convergence for the time-dependent Joule heating problem with mixed boundary conditions
  • 2022
  • Ingår i: Ima Journal of Numerical Analysis. - : Oxford University Press (OUP). - 0272-4979 .- 1464-3642. ; 42:1, s. 199-228
  • Tidskriftsartikel (refereegranskat)abstract
    • We prove strong convergence for a large class of finite element methods for the time-dependent Joule heating problem in three spatial dimensions with mixed boundary conditions on Lipschitz domains. We consider conforming subspaces for the spatial discretization and the backward Euler scheme for the temporal discretization. Furthermore, we prove uniqueness and higher regularity of the solution on creased domains and additional regularity in the interior of the domain. Due to a variational formulation with a cut-off functional, the convergence analysis does not require a discrete maximum principle, permitting approximation spaces suitable for adaptive mesh refinement, responding to the difference in regularity within the domain.
  •  
18.
  • Petersson, Linda, et al. (författare)
  • Sprouts of shoot-clipped oak (Quercus alba and Q. robur) germinants show morphological and photosynthetic acclimation to contrasting light environments
  • 2020
  • Ingår i: New forests. - : Springer. - 0169-4286 .- 1573-5095. ; 51, s. 817-834
  • Tidskriftsartikel (refereegranskat)abstract
    • Sprouting by woody plants can increase species resilience to disturbance and foster regeneration during periods with little recruitment from seed. Though sprouting often plays a critical role in oak forest regeneration, there is little information available on sprouting capacity and sprout physiology at the seedling stage, particularly for new germinants. This study compared sprouting capacity and sprout photosynthesis of shoot-clipped germinants of two temperate oaks established in contrasting light environments. We studied the North American Quercus alba and the European Q. robur, both are in the section Quercus and appear to share similar biological and ecological requirements. Sprouting capacity for both species was enhanced under high light availability (29% more sprouts per plant), a response not previously noted for oak germinants. Seedling sprouts acclimated to high light with a 34% decrease in leaf area ratio, a 56% increase in leaf mass per area, and a 49% increase in the light-saturated maximum photosynthetic rate. Though both species appeared similarly adapted to shoot loss, a greater sprouting capacity (29% more sprouts per plant) and plant-level net photosynthesis (73% higher) was observed for Q. robur, regardless of light environment. As naturally regenerated oak seedlings in forest understories often experience disturbance or stress resulting in shoot loss or die-back, our results highlight the importance of the light environment during early plant development. Our comparison of temperate oaks from different continents should facilitate exchange of successful stand regeneration practices within the range of temperate oak forests.
  •  
19.
  • Winbo, Annika, 1978-, et al. (författare)
  • The Swedish long QT syndrome R518X/KCNQ1 founder population- origin and clinical phenotype : phenotypic variability partly explained by gender-specific effects of sequence variants in the NOS1AP gene
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Genetic modifiers have been proposed to explain phenotypic variability in the long QT syndrome (LQTS). We investigate the origin and phenotype of the worldwide common R518X/KCNQ1 mutation in Sweden, as well as possible associations between p.R518X-LQTS phenotype and previously reported modifying sequence variants in the NOS1AP, KCNH2, KCNE1, SCN5A and KCNQ1(3’UTR) genes. Methods and Results: We identified 19 p.R518X families (101 mutation-carriers, whereof 15 Jervell and Lange-Nielsen (JLNS) cases and 86 LQTS cases). Analyses of microsatellite markers, genealogy and mutation age (ESTIAGE) identified a common northern origin ~700 years ago for 17/19 families and a high prevalence of Swedish p.R518X heterozygotes was suggested (DMLE). Clinical phenotype ranged from severe in JLNS to relatively benign in LQTS (QTc 576±61 ms vs. 462±34 ms, cumulative incidence of (aborted) cardiac arrest 47% vs 1%, annual non-medicated incidence rate (aborted) cardiac arrest 4% vs. 0.04%).In p.R518X-LQTS males, two NOS1AP variants rs12143842 and rs16847548 were associated with a 29 ms QT prolongation (p=0.004), explaining 27% of QTc variability.Three derived 3’UTR-KCNQ1 variants, previously shown to suppress gene expression in an allele-specific manner, were found to segregate with the founder mutation.Conclusion: The R518X/KCNQ1 mutation is a Swedish founder mutation presenting with an expectedly severe phenotype in JLNS and an unusually mild phenotype in LQTS, although intra-familial variability remained. Gender-specific effects of NOS1AP sequence variants explained over a fourth of QTc variance in p.R518X-LQTS males, warranting further studies. Repressive 3’UTR-KCNQ1 sequence variants segregating within the founder haplotype could possibly contribute to its relative benignancy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-19 av 19
Typ av publikation
tidskriftsartikel (14)
doktorsavhandling (2)
bok (1)
annan publikation (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (16)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Ward, Eric J. (2)
Johansson, Lars (1)
Henriksson, Martin (1)
Johansson, Fredrik (1)
Helleday, Thomas (1)
Rydberg, Annika (1)
visa fler...
Persson, Johan (1)
Wallin, Göran (1)
Andersson, Micael (1)
Uddling, Johan, 1972 (1)
Wallin, Göran, 1955 (1)
Loseva, Olga (1)
Artursson, Per (1)
Hammarström, Lars G. ... (1)
Egertsdotter, Ulrika (1)
Norby, Richard J. (1)
Rogers, Alistair (1)
Zsoldos, Eniko (1)
Svensson, Richard (1)
Jenmalm Jensen, Anni ... (1)
Lundbäck, Thomas (1)
Lundin, Cecilia (1)
Schultz, Niklas (1)
Löf, Magnus (1)
Persson, Anna (1)
Gustafsson, Robert (1)
Jensen, M (1)
Axelsson, Hanna (1)
Altun, Mikael (1)
Jeppsson, Fredrik (1)
Djureinovic, Tatjana (1)
Stenmark, Pål (1)
Nyberg, Lars, 1966- (1)
Nilsson, Jonas A, 19 ... (1)
Reich, Peter B (1)
Pudas, Sara, Docent, ... (1)
Norberg, Anna (1)
Tjoelker, Mark G (1)
Wallner, Olov A. (1)
Lundquist, Anders, 1 ... (1)
Jensen, Steen M. (1)
Gad, Helge (1)
Boraxbekk, Carl-Joha ... (1)
Guha, Anirban (1)
Mercado, Lina M. (1)
Persson, Maria (1)
Martens, Ulf (1)
Häggblad, Maria (1)
Lundgren, Bo (1)
Bertram, Lars (1)
visa färre...
Lärosäte
Linnéuniversitetet (15)
Göteborgs universitet (3)
Sveriges Lantbruksuniversitet (3)
Umeå universitet (2)
Kungliga Tekniska Högskolan (1)
Uppsala universitet (1)
visa fler...
Stockholms universitet (1)
Linköpings universitet (1)
Lunds universitet (1)
Chalmers tekniska högskola (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (18)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Lantbruksvetenskap (11)
Naturvetenskap (10)
Medicin och hälsovetenskap (3)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy