SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Johnston Hollitt M.) "

Sökning: WFRF:(Johnston Hollitt M.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andreoni, I., et al. (författare)
  • Follow Up of GW170817 and Its Electromagnetic Counterpart by Australian-Led Observing Programmes
  • 2017
  • Ingår i: Publications Astronomical Society of Australia. - : Cambridge University Press (CUP). - 1323-3580 .- 1448-6083. ; 34
  • Forskningsöversikt (refereegranskat)abstract
    • The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid-infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source emission cooled from approximately 6 400 K to 2 100 K over a 7-d period and produced no significant optical emission lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger. The displacement (similar to 2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the progenitor are poor.
  •  
2.
  • Pierre, M., et al. (författare)
  • The XXL survey : First results and future
  • 2017
  • Ingår i: Astronomical Notes - Astronomische Nachrichten. - : Wiley-VCH Verlagsgesellschaft. - 0004-6337 .- 1521-3994. ; 338:2-3, s. 334-341
  • Tidskriftsartikel (refereegranskat)abstract
    • The XXL survey currently covers two 25 deg(2) patches with XMM observations of similar to 10 ks. We summarize the scientific results associated with the first release of the XXL dataset, which occurred in mid-2016. We review several arguments for increasing the survey depth to 40 ks during the next decade of XMM operations. X-ray (z < 2) cluster, (z < 4) active galactic nuclei (AGN), and cosmic background survey science will then benefit from an extraordinary data reservoir. This, combined with deep multi-lambda observations, will lead to solid standalone cosmological constraints and provide a wealth of information on the formation and evolution of AGN, clusters, and the X-ray background. In particular, it will offer a unique opportunity to pinpoint the z > 1 cluster density. It will eventually constitute a reference study and an ideal calibration field for the upcoming eROSITA and Euclid missions.
  •  
3.
  • Bhat, N. D. R., et al. (författare)
  • Observations of Low-frequency Radio Emission from Millisecond Pulsars and Multipath Propagation in the Interstellar Medium
  • 2018
  • Ingår i: Astrophysical Journal, Supplement Series. - : American Astronomical Society. - 1538-4365 .- 0067-0049. ; 238:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Studying the gravitational-wave sky with pulsar timing arrays (PTAs) is a key science goal for the Square Kilometre Array (SKA) and its pathfinder telescopes. With current PTAs reaching sub-microsecond timing precision, making accurate measurements of interstellar propagation effects and mitigating them effectively has become increasingly important to realize PTA goals. As these effects are much stronger at longer wavelengths, low-frequency observations are most appealing for characterizing the interstellar medium (ISM) along the sight lines toward PTA pulsars. The Murchison Widefield Array (MWA) and the Engineering Development Array (EDA), which utilizes MWA technologies, present promising opportunities for undertaking such studies, particularly for PTA pulsars located in the southern sky. Such pulsars are also the prime targets for PTA efforts planned with the South African MeerKAT, and eventually with the SKA. In this paper we report on observations of two bright southern millisecond pulsars, PSR J0437-4715 and PSR J2145-0750, made with these facilities; MWA observations sampled multiple frequencies across the 80-250 MHz frequency range, while the EDA provided direct-sampled baseband data to yield a large instantaneous usable bandwidth of similar to 200 MHz. Using these exploratory observations, we investigate various aspects relating to pulsar emission and ISM properties, such as spectral evolution of the mean pulse shape, scintillation as a function of frequency, chromaticity in interstellar dispersion, and flux density spectra at low frequencies. Systematic and regular monitoring observations will help ascertain the role of low-frequency measurements in PTA experiments, while simultaneously providing a detailed characterization of the ISM toward the pulsars, which will be useful in devising optimal observing strategies for future PTA experiments.
  •  
4.
  • Heald, G., et al. (författare)
  • Magnetism science with the square kilometre array
  • 2020
  • Ingår i: Galaxies. - : MDPI AG. - 2075-4434. ; 8:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The Square Kilometre Array (SKA) will answer fundamental questions about the origin, evolution, properties, and influence of magnetic fields throughout the Universe. Magnetic fields can illuminate and influence phenomena as diverse as star formation, galactic dynamics, fast radio bursts, active galactic nuclei, large-scale structure, and dark matter annihilation. Preparations for the SKA are swiftly continuing worldwide, and the community is making tremendous observational progress in the field of cosmic magnetism using data from a powerful international suite of SKA pathfinder and precursor telescopes. In this contribution, we revisit community plans for magnetism research using the SKA, in light of these recent rapid developments. We focus in particular on the impact that new radio telescope instrumentation is generating, thus advancing our understanding of key SKA magnetism science areas, as well as the new techniques that are required for processing and interpreting the data. We discuss these recent developments in the context of the ultimate scientific goals for the SKA era.
  •  
5.
  • Oppermann, N., et al. (författare)
  • Estimating extragalactic Faraday rotation
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 575
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of Faraday rotation for extragalactic sources probe magnetic fields both inside and outside the Milky Way. Building on our earlier estimate of the Galactic contribution, we set out to estimate the extragalactic contributions. We discuss the problems involved; in particular, we point out that taking the difference between the observed values and the Galactic foreground reconstruction is not a good estimate for the extragalactic contributions. We point out a degeneracy between the contributions to the observed values due to extragalactic magnetic fields and observational noise and comment on the dangers of over-interpreting an estimate without taking into account its uncertainty information. To overcome these difficulties, we develop an extended reconstruction algorithm based on the assumption that the observational uncertainties are accurately described for a subset of the data, which can overcome the degeneracy with the extragalactic contributions. We present a probabilistic derivation of the algorithm and demonstrate its performance using a simulation, yielding a high quality reconstruction of the Galactic Faraday rotation foreground, a precise estimate of the typical extragalactic contribution, and a well-defined probabilistic description of the extragalactic contribution for each data point. We then apply this reconstruction technique to a catalog of Faraday rotation observations for extragalactic sources. The analysis is done for several different scenarios, for which we consider the error bars of different subsets of the data to accurately describe the observational uncertainties. By comparing the results, we argue that a split that singles out only data near the Galactic poles is the most robust approach. We find that the dispersion of extragalactic contributions to observed Faraday depths is most likely lower than 7 rad/m(2), in agreement with earlier results, and that the extragalactic contribution to an individual data point is poorly constrained by the data in most cases.
  •  
6.
  • Vacca, V., et al. (författare)
  • Statistical methods for the analysis of rotation measure grids in large scale structures in the SKA era
  • 2015
  • Ingår i: Proceedings of Science. - 1824-8039. ; 9-13-June-2014
  • Konferensbidrag (refereegranskat)abstract
    • Determining magnetic field properties in different environments of the cosmic large-scale structure as well as their evolution over redshift is a fundamental step toward uncovering the origin of cosmic magnetic fields. Radio observations permit the study of extragalactic magnetic fields via measurements of the Faraday depth of extragalactic radio sources. Our aim is to investigate how much different extragalactic environments contribute to the Faraday depth variance of these sources. We develop a Bayesian algorithm to distinguish statistically Faraday depth variance contributions intrinsic to the source from those due to the medium between the source and the observer. In our algorithm the Galactic foreground and the measurement noise are taken into account as the uncertainty correlations of the galactic model. Additionally, our algorithm allows for the investigation of possible redshift evolution of the extragalactic contribution. This work presents the derivation of the algorithm and tests performed on mock observations. With cosmic magnetism being one of the key science projects of the new generation of radio interferometers we have made predictions for the algorithm's performance on data from the next generation of radio interferometers. Applications to real data are left for future work.
  •  
7.
  • Vacca, V., et al. (författare)
  • Using rotation measure grids to detect cosmological magnetic fields: A Bayesian approach
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 591, s. Art. no. A13-
  • Tidskriftsartikel (refereegranskat)abstract
    • Determining magnetic field properties in different environments of the cosmic large-scale structure as well as their evolution over redshift is a fundamental step toward uncovering the origin of cosmic magnetic fields. Radio observations permit the study of extragalactic magnetic fields via measurements of the Faraday depth of extragalactic radio sources. Our aim is to investigate how much different extragalactic environments contribute to the Faraday depth variance of these sources. We develop a Bayesian algorithm to distinguish statistically Faraday depth variance contributions intrinsic to the source from those due to the medium between the source and the observer. In our algorithm the Galactic foreground and measurement noise are taken into account as the uncertainty correlations of the Galactic model. Additionally, our algorithm allows for the investigation of possible redshift evolution of the extragalactic contribution. This work presents the derivation of the algorithm and tests performed on mock observations. Because cosmic magnetism is one of the key science projects of the new generation of radio interferometers, we have predicted the performance of our algorithm on mock data collected with these instruments. According to our tests, high-quality catalogs of a few thousands of sources should already enable us to investigate magnetic fields in the cosmic structure.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy