SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jones GT) "

Sökning: WFRF:(Jones GT)

  • Resultat 1-25 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Schael, S, et al. (författare)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • Ingår i: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Forskningsöversikt (refereegranskat)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
3.
  •  
4.
  • James, SL, et al. (författare)
  • Global injury morbidity and mortality from 1990 to 2017: results from the Global Burden of Disease Study 2017
  • 2020
  • Ingår i: Injury prevention : journal of the International Society for Child and Adolescent Injury Prevention. - : BMJ. - 1475-5785. ; 26:SUPP_1Supp 1, s. 96-114
  • Tidskriftsartikel (refereegranskat)abstract
    • Past research in population health trends has shown that injuries form a substantial burden of population health loss. Regular updates to injury burden assessments are critical. We report Global Burden of Disease (GBD) 2017 Study estimates on morbidity and mortality for all injuries.MethodsWe reviewed results for injuries from the GBD 2017 study. GBD 2017 measured injury-specific mortality and years of life lost (YLLs) using the Cause of Death Ensemble model. To measure non-fatal injuries, GBD 2017 modelled injury-specific incidence and converted this to prevalence and years lived with disability (YLDs). YLLs and YLDs were summed to calculate disability-adjusted life years (DALYs).FindingsIn 1990, there were 4 260 493 (4 085 700 to 4 396 138) injury deaths, which increased to 4 484 722 (4 332 010 to 4 585 554) deaths in 2017, while age-standardised mortality decreased from 1079 (1073 to 1086) to 738 (730 to 745) per 100 000. In 1990, there were 354 064 302 (95% uncertainty interval: 338 174 876 to 371 610 802) new cases of injury globally, which increased to 520 710 288 (493 430 247 to 547 988 635) new cases in 2017. During this time, age-standardised incidence decreased non-significantly from 6824 (6534 to 7147) to 6763 (6412 to 7118) per 100 000. Between 1990 and 2017, age-standardised DALYs decreased from 4947 (4655 to 5233) per 100 000 to 3267 (3058 to 3505).InterpretationInjuries are an important cause of health loss globally, though mortality has declined between 1990 and 2017. Future research in injury burden should focus on prevention in high-burden populations, improving data collection and ensuring access to medical care.
  •  
5.
  • James, SL, et al. (författare)
  • Estimating global injuries morbidity and mortality: methods and data used in the Global Burden of Disease 2017 study
  • 2020
  • Ingår i: Injury prevention : journal of the International Society for Child and Adolescent Injury Prevention. - : BMJ. - 1475-5785. ; 26:SUPP_1Supp 1, s. 125-153
  • Tidskriftsartikel (refereegranskat)abstract
    • While there is a long history of measuring death and disability from injuries, modern research methods must account for the wide spectrum of disability that can occur in an injury, and must provide estimates with sufficient demographic, geographical and temporal detail to be useful for policy makers. The Global Burden of Disease (GBD) 2017 study used methods to provide highly detailed estimates of global injury burden that meet these criteria.MethodsIn this study, we report and discuss the methods used in GBD 2017 for injury morbidity and mortality burden estimation. In summary, these methods included estimating cause-specific mortality for every cause of injury, and then estimating incidence for every cause of injury. Non-fatal disability for each cause is then calculated based on the probabilities of suffering from different types of bodily injury experienced.ResultsGBD 2017 produced morbidity and mortality estimates for 38 causes of injury. Estimates were produced in terms of incidence, prevalence, years lived with disability, cause-specific mortality, years of life lost and disability-adjusted life-years for a 28-year period for 22 age groups, 195 countries and both sexes.ConclusionsGBD 2017 demonstrated a complex and sophisticated series of analytical steps using the largest known database of morbidity and mortality data on injuries. GBD 2017 results should be used to help inform injury prevention policy making and resource allocation. We also identify important avenues for improving injury burden estimation in the future.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  • Georgiadis, S, et al. (författare)
  • CAN SINGLE IMPUTATION TECHNIQUES FOR BASDAI COMPONENTS RELIABLY CALCULATE THE COMPOSITE SCORE IN AXIAL SPONDYLOARTHRITIS PATIENTS?
  • 2022
  • Ingår i: ANNALS OF THE RHEUMATIC DISEASES. - : BMJ. - 0003-4967 .- 1468-2060. ; 81, s. 212-213
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • In axial spondyloarthritis (axSpA), Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) is a key patient-reported outcome. However, one or more of its components may be missing when recorded in clinical practice.ObjectivesTo determine whether an individual patient’s BASDAI at a given timepoint can be reliably calculated with different single imputation techniques and to explore the impact of the number of missing components and/or differences between missingness of individual components.MethodsReal-life data from axSpA patients receiving tumour necrosis factor inhibitors (TNFi) from 13 countries in the European Spondyloarthritis (EuroSpA) Research Collaboration Network were utilized [1]. We studied missingness in BASDAI components based on simulations in a complete dataset, where we applied and expanded the approach of Ramiro et al. [2]. After introducing one or more missing components completely at random, BASDAI was calculated from the available components and with three different single imputation techniques: possible middle value (i.e. 50) of the component and mean and median of the available components. Differences between the observed (original) and calculated scores were assessed and correct classification of patients as having BASDAI<40 mm was additionally evaluated. For the setting with one missing component, differences arising between missing one of components 1-4 versus 5-6 were explored. Finally, the performance of imputations in relation to the values of the original score was investigated.ResultsA total of 19,894 axSpA patients with at least one complete BASDAI registration at any timepoint were included. 59,126 complete BASDAI registrations were utilized for the analyses with a mean BASDAI of 38.5 (standard deviation 25.9). Calculating BASDAI from the available components and imputing with mean or median showed similar levels of agreement (Table 1). When allowing one missing component, >90% had a difference of ≤6.9 mm between the original and calculated scores and >95% were correctly classified as BASDAI<40 (Table 1). However, separate analyses of components 1-4 and 5-6 as a function of the BASDAI score suggested that imputing any one of the first four BASDAI components resulted in a level of agreement <90% for specific BASDAI values while imputing one of the stiffness components 5-6 always reached a level of agreement >90% (Figure 1, upper panels). As expected, it was observed that regardless of the BASDAI component set to missing and the imputation technique used, correct classification of patients as BASDAI<40 was less than 95% for values around the cutoff (Figure 1, lower panels).Table 1.Level of agreement between the original and calculated BASDAI and correct classification for BASDAI<40 mmLevel of agreement with Dif≤6.9 mm* (%)Correct classification for BASDAI<40 mm** (%)1 missing componentAvailable93.996.9Value 5073.996.3Mean94.296.8Median93.196.82 missing componentsAvailable83.794.8Value 5040.792.8Mean83.594.8Median82.894.73 missing componentsAvailable71.992.6Value 5028.187.3Mean72.292.6Median69.792.2* The levels of agreement with a difference (Dif) of ≤6.9 mm between the original and calculated scores were based on the half of the smallest detectable change. Agreement of >90% was considered as acceptable. ** Correct classification of >95% was considered as acceptable.Figure 1.Level of agreement between the original and calculated BASDAI and correct classification for BASDAI<40 mm as a function of the original scoreConclusionBASDAI calculation with available components gave similar results to single imputation of missing components with mean or median. Only when missing one of BASDAI components 5 or 6, single imputation techniques can reliably calculate individual BASDAI scores. However, missing any single component value results in misclassification of patients with original BASDAI scores close to 40.References[1]Ørnbjerg et al. (2019). Ann Rheum Dis, 78(11), 1536-1544.[2]Ramiro et al. (2014). Rheumatology, 53(2), 374-376.AcknowledgementsNovartis Pharma AG and IQVIA for supporting the EuroSpA collaboration.Disclosure of InterestsStylianos Georgiadis Grant/research support from: Novartis, Myriam Riek Grant/research support from: Novartis, Christos Polysopoulos Grant/research support from: Novartis, Almut Scherer Grant/research support from: Novartis, Daniela Di Giuseppe: None declared, Gareth T. Jones Speakers bureau: Janssen, Grant/research support from: AbbVie, Pfizer, UCB, Amgen, GSK, Merete Lund Hetland Grant/research support from: Abbvie, Biogen, BMS, Celltrion, Eli Lilly, Janssen Biologics B.V, Lundbeck Fonden, MSD, Medac, Pfizer, Roche, Samsung Biopies, Sandoz, Novartis, Mikkel Østergaard Speakers bureau: Abbvie, BMS, Boehringer-Ingelheim, Celgene, Eli-Lilly, Hospira, Janssen, Merck, Novartis, Novo, Orion, Pfizer, Regeneron, Roche, Sandoz, Sanofi, UCB, Consultant of: Abbvie, BMS, Boehringer-Ingelheim, Celgene, Eli-Lilly, Hospira, Janssen, Merck, Novartis, Novo, Orion, Pfizer, Regeneron, Roche, Sandoz, Sanofi, UCB, Grant/research support from: Abbvie, BMS, Merck, Celgene, Novartis, Simon Horskjær Rasmussen Grant/research support from: Novartis, Johan K Wallman Consultant of: AbbVie, Amgen, Celgene, Eli Lilly, Novartis, Bente Glintborg Grant/research support from: Pfizer, Abbvie, BMS, Anne Gitte Loft Speakers bureau: AbbVie, Janssen, Lilly, MSD, Novartis, Pfizer, Roche, UCB, Consultant of: AbbVie, Janssen, Lilly, MSD, Novartis, Pfizer, Roche, UCB, Karel Pavelka Speakers bureau: Pfizer, MSD, BMS, UCB, Amgen, Egis, Roche, AbbVie, Consultant of: Pfizer, MSD, BMS, UCB, Amgen, Egis, Roche, AbbVie, Jakub Zavada Speakers bureau: Abbvie, Elli-Lilly, Sandoz, Novartis, Egis, UCB, Consultant of: Abbvie, Elli-Lilly, Sandoz, Novartis, Egis, UCB, Merih Birlik: None declared, Ayten Yazici Grant/research support from: Roche, Brigitte Michelsen Grant/research support from: Novartis, Eirik kristianslund: None declared, Adrian Ciurea Speakers bureau: AbbVie, Eli Lilly, Merck Sharp & Dohme, Novartis, Pfizer, Consultant of: AbbVie, Eli Lilly, Merck Sharp & Dohme, Novartis, Pfizer, Michael J. Nissen Speakers bureau: AbbVie, Eli Lilly, Janssens, Novartis, Pfizer, Consultant of: AbbVie, Eli Lilly, Janssens, Novartis, Pfizer, Ana Maria Rodrigues Speakers bureau: Abbvie, Amgen, Consultant of: Abbvie, Amgen, Grant/research support from: Novartis, Pfizer, Amgen, Maria Jose Santos Speakers bureau: Abbvie, AstraZeneca, Lilly, Novartis, Pfizer, Gary Macfarlane Grant/research support from: GSK, Anna-Mari Hokkanen Grant/research support from: MSD, Heikki Relas Speakers bureau: Abbvie, Celgene, Pfizer, UCB, Viatris, Consultant of: Abbvie, Celgene, Pfizer, UCB, Viatris, Catalin Codreanu Speakers bureau: AbbVie, Amgen, Boehringer Ingelheim, Ewopharma, Lilly, Novartis, Pfizer, Consultant of: AbbVie, Amgen, Boehringer Ingelheim, Ewopharma, Lilly, Novartis, Pfizer, Corina Mogosan: None declared, Ziga Rotar Speakers bureau: Abbvie, Novartis, MSD, Medis, Biogen, Eli Lilly, Pfizer, Sanofi, Lek, Janssen, Consultant of: Abbvie, Novartis, MSD, Medis, Biogen, Eli Lilly, Pfizer, Sanofi, Lek, Janssen, Matija Tomsic Speakers bureau: Abbvie, Amgen, Biogen, Eli Lilly, Janssen, Medis, MSD, Novartis, Pfizer, Sanofi, Sandoz-Lek, Consultant of: Abbvie, Amgen, Biogen, Eli Lilly, Janssen, Medis, MSD, Novartis, Pfizer, Sanofi, Sandoz-Lek, Björn Gudbjornsson Speakers bureau: Amgen, Novartis, Consultant of: Amgen, Novartis, Arni Jon Geirsson: None declared, Pasoon Hellamand Grant/research support from: Novartis, Marleen G.H. van de Sande Speakers bureau: Eli Lilly, Novartis, UCB, Janssen, Abbvie, Consultant of: Eli Lilly, Novartis, UCB, Janssen, Abbvie, Grant/research support from: Eli Lilly, Novartis, UCB, Janssen, Abbvie, Isabel Castrejon: None declared, Manuel Pombo-Suarez Consultant of: Abbvie, MSD, Roche, Bruno Frediani: None declared, Florenzo Iannone Speakers bureau: Abbvie, Amgen, AstraZeneca, BMS, Galapagos, Janssen, Lilly, MSD, Novartis, Pfizer, Roche, UCB, Consultant of: Abbvie, Amgen, AstraZeneca, BMS, Galapagos, Janssen, Lilly, MSD, Novartis, Pfizer, Roche, UCB, Lykke Midtbøll Ørnbjerg Grant/research support from: Novartis
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  • Ornbjerg, LM, et al. (författare)
  • SECULAR TRENDS IN BASELINE CHARACTERISTICS, TREATMENT RETENTION AND RESPONSE RATES IN 27189 BIO-NAIVE AXIAL SPONDYLOARTHRITIS PATIENTS INITIATING TNFI - RESULTS FROM THE EUROSPA COLLABORATION
  • 2021
  • Ingår i: ANNALS OF THE RHEUMATIC DISEASES. - : BMJ. - 0003-4967 .- 1468-2060. ; 80, s. 217-218
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Knowledge of changes over time in baseline characteristics and tumor necrosis factor inhibitor (TNFi) response in bio-naïve axial spondyloarthritis (axSpA) patients treated in routine care is limited.Objectives:To investigate secular trends in baseline characteristics and retention, remission and response rates in axSpA patients initiating a first TNFi.Methods:Prospectively collected data on bio-naïve axSpA patients starting TNFi in routine care from 15 European countries were pooled. According to year of TNFi initiation, three groups were defined a priori based on bDMARD availability: Group A (1999–2008), Group B (2009–2014) and Group C (2015–2018). Retention rates (Kaplan-Meier), crude and LUNDEX adjusted1 remission (Ankylosing Spondylitis Disease Activity Score (ASDAS) <1.3, Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) <20) and response (ASDAS Major and Clinically Important Improvement (MI/CII), BASDAI 50) rates were assessed at 6, 12 and 24 months. No statistical comparisons were made.Results:In total, 27189 axSpA patients were included (5945, 11255 and 9989 in groups A, B and C).At baseline, patients in group A were older, had longer disease duration and a larger proportion of male and HLA-B27 positive patients compared to B and C, whereas disease activity was similar across groups.Retention rates at 6, 12 and 24 months were highest in group A (88%/81%/71%) but differed little between B (84%/74%/64%) and C (85%/76%/67%).In all groups, median ASDAS and BASDAI had decreased markedly at 6 months (Table 1). The ASDAS values at 12 and 24 months and BASDAI at 24 months were higher in group A compared with groups B and C. Similarly, crude remission and response rates were lowest in group A. After adjustments for drug retention (LUNDEX), remission and response rates showed less pronounced between-group differences regarding ASDAS measures and no relevant differences regarding BASDAI measures.Conclusion:Nowadays, axSpA patients initiating TNFi are younger with shorter disease duration and more frequently female and HLA-B27 negative than previously, while baseline disease activity is unchanged. Drug retention rates have decreased, whereas crude remission and response rates have increased. This may indicate expanded indication but also a stable disease activity threshold for TNFi initiation over time, an increased focus on targeting disease remission and more available treatment options.References:[1]Arthritis Rheum 2006; 54: 600-6.Table 1.Secular trends in baseline characteristics, treatment retention, remission and response rates in European axSpA patients initiating a 1st TNFiBaseline characteristicsGroup A(1999–2008)Group B(2009–2014)Group C(2015–2018)Age, years, median (IQR)57 (49–66)51 (42–60)46 (37–56)Male, %666057HLA-B27, %877772Years since diagnosis, median (IQR)5 (1–12)2 (0–8)2 (0–7)Smokers, %232425ASDAS, median (IQR)3.5 (2.8–4.1)3.4 (2.8–4.1)3.5 (2.8–4.1)BASDAI, median, (IQR)57 (42–71)59 (43–72)57 (41–71)TNFi drug, % (Adalimumab /Etanercept / Infliximab /Certolizumab / Golimumab)22 / 35 / 43 / 0 / 037 / 21 / 20 / 4 / 1827 / 28 / 24 / 8 / 13Follow up6 months12 months24 monthsGr AGr BGr CGr AGr BGr CGr AGr BGr CRetention rates, %, (95% CI)88 (88–89)84 (83–85)85 (84–86)81 (80–82)74 (74–75)76 (75–76)71 (70–72)64 (63–65)67 (66–68)ASDAS, median, (IQR)1.8 (1.2–2.8)1.9 (1.2–2.8)1.8 (1.2–2.6)1.9 (1.3–2.6)1.7 (1.2–2.5)1.6 (1.1–2.4)1.9 (1.4–2.6)1.7 (1.1–2.4)1.5 (1.1–2.2)ASDAS inactive disease, %, c/L28 / 2528 / 2430 / 2624 / 1932 / 2434 / 2623 / 1634 / 2039 / 23ASDAS CII, %, c/L57 / 5159 / 5063 / 5461 / 5063 / 4767 / 5159 / 4168 / 4074 / 45ASDAS MI, %, c/L31 / 2732 / 2737 / 3232 / 2637 / 2741 / 3130 / 2042 / 2546 / 28BASDAI, median, (IQR)23 (10–40)26 (11–48)24 (10–44)21 (10–38)23 (10–42)20 (8–39)22 (9–40)20 (8–39)16 (6–35)BASDAI remission, %, c/L44 / 4040 / 3443 / 3645 / 3645 / 3450 / 3844 / 3048 / 2956 / 34BASDAI 50 response, %, c/L53 / 4750 / 4253 / 4557 / 4656 / 4258 / 4457 / 3960 / 3563 / 38Gr, Group; c/L, crude/LUNDEX adjusted.Acknowledgements:Novartis Pharma AG and IQVIA for supporting the EuroSpA Research Collaboration Network.Disclosure of Interests:Lykke Midtbøll Ørnbjerg Grant/research support from: Novartis, Sara Nysom Christiansen Speakers bureau: BMS and GE, Grant/research support from: Novartis, Simon Horskjær Rasmussen: None declared, Anne Gitte Loft Speakers bureau: AbbVie, Janssen, Lilly, MSD, Novartis, Pfizer, UCB, Consultant of: AbbVie, Janssen, Lilly, MSD, Novartis, Pfizer, UCB, Grant/research support from: Novartis, Ulf Lindström: None declared, Jakub Zavada: None declared, Florenzo Iannone: None declared, Fatos Onen: None declared, Michael J. Nissen Speakers bureau: Novartis, Eli Lilly, Celgene, and Pfizer, Consultant of: Novartis, Eli Lilly, Celgene, and Pfizer, Brigitte Michelsen Consultant of: Novartis, Grant/research support from: Novartis, Maria Jose Santos Speakers bureau: AbbVie, Novartis, Pfizer, Gary Macfarlane Grant/research support from: GlaxoSmithKline, Dan Nordström Consultant of: Abbvie, BMS, MSD, Novartis, Pfizer, Roche, UCB, Manuel Pombo-Suarez: None declared, Catalin Codreanu Speakers bureau: AbbVie, Amgen, Egis, Novartis, Pfizer, UCB, Grant/research support from: AbbVie, Amgen, Egis, Novartis, Pfizer, UCB, Matija Tomsic Speakers bureau: Abbvie, Amgen, Biogen, Medis, MSD, Novartis, Pfizer, Consultant of: Abbvie, Amgen, Biogen, Medis, MSD, Novartis, Pfizer, Irene van der Horst-Bruinsma Speakers bureau: Abbvie, BMS, MSD, Novartis, Pfizer, Lilly, UCB, Björn Gudbjornsson Speakers bureau: Amgen and Novartis, Johan Askling: None declared, Bente Glintborg Grant/research support from: Pfizer, Biogen, AbbVie, Karel Pavelka Speakers bureau: AbbVie, Roche, MSD, UCB, Pfizer, Novartis, Egis, Gilead, Eli Lilly, Consultant of: AbbVie, Roche, MSD, UCB, Pfizer, Novartis, Egis, Gilead, Eli Lilly, Elisa Gremese: None declared, Nurullah Akkoc: None declared, Adrian Ciurea Speakers bureau: Abbvie, Eli-Lilly, MSD, Novartis, Pfizer, Eirik kristianslund: None declared, Anabela Barcelos: None declared, Gareth T. Jones Grant/research support from: Pfizer, AbbVie, UCB, Celgene, Amgen, GSK, Anna-Mari Hokkanen Grant/research support from: MSD, Carlos Sánchez-Piedra: None declared, Ruxandra Ionescu Speakers bureau: Abbvie, Amgen, Boehringer-Ingelheim Eli-Lilly,Novartis, Pfizer, Sandoz, UCB, Ziga Rotar Speakers bureau: Abbvie, Amgen, Biogen, Medis, MSD, Novartis, Pfizer, Consultant of: Abbvie, Amgen, Biogen, Medis, MSD, Novartis, Pfizer, Marleen G.H. van de Sande: None declared, Arni Jon Geirsson: None declared, Mikkel Østergaard Speakers bureau: AbbVie, BMS, Boehringer-Ingelheim, Celgene, Eli-Lilly, Centocor, GSK, Hospira, Janssen, Merck, Mundipharma, Novartis, Novo, Orion, Pfizer, Regeneron, Schering-Plough, Roche, Takeda, UCB and Wyeth, Consultant of: AbbVie, BMS, Boehringer-Ingelheim, Celgene, Eli-Lilly, Centocor, GSK, Hospira, Janssen, Merck, Mundipharma, Novartis, Novo, Orion, Pfizer, Regeneron, Schering-Plough, Roche, Takeda, UCB and Wyeth, Merete L. Hetland Speakers bureau: Abbvie, Biogen, BMS, Celltrion, Eli Lilly, Janssen Biologics B.V, Lundbeck Fonden, MSD, Pfizer, Roche, Samsung Biopies, Sandoz, Novartis.
  •  
24.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy