SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Köhn Daniel) "

Sökning: WFRF:(Köhn Daniel)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jurasinski, Gerald, et al. (författare)
  • From Understanding to Sustainable Use of Peatlands : The WETSCAPES Approach
  • 2020
  • Ingår i: SOIL SYSTEMS. - : MDPI. - 2571-8789. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Of all terrestrial ecosystems, peatlands store carbon most effectively in long-term scales of millennia. However, many peatlands have been drained for peat extraction or agricultural use. This converts peatlands from sinks to sources of carbon, causing approx. 5% of the anthropogenic greenhouse effect and additional negative effects on other ecosystem services. Rewetting peatlands can mitigate climate change and may be combined with management in the form of paludiculture. Rewetted peatlands, however, do not equal their pristine ancestors and their ecological functioning is not understood. This holds true especially for groundwater-fed fens. Their functioning results from manifold interactions and can only be understood following an integrative approach of many relevant fields of science, which we merge in the interdisciplinary project WETSCAPES. Here, we address interactions among water transport and chemistry, primary production, peat formation, matter transformation and transport, microbial community, and greenhouse gas exchange using state of the art methods. We record data on six study sites spread across three common fen types (Alder forest, percolation fen, and coastal fen), each in drained and rewetted states. First results revealed that indicators reflecting more long-term effects like vegetation and soil chemistry showed a stronger differentiation between drained and rewetted states than variables with a more immediate reaction to environmental change, like greenhouse gas (GHG) emissions. Variations in microbial community composition explained differences in soil chemical data as well as vegetation composition and GHG exchange. We show the importance of developing an integrative understanding of managed fen peatlands and their ecosystem functioning. 
  •  
2.
  • Meyer, H.F., et al. (författare)
  • Overview of physics studies on ASDEX Upgrade
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • The ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-inductive operation (q 95 = 5.5, ) at low density. Higher installed electron cyclotron resonance heating power 6 MW, new diagnostics and improved analysis techniques have further enhanced the capabilities of AUG. Stable high-density H-modes with MW m-1 with fully detached strike-points have been demonstrated. The ballooning instability close to the separatrix has been identified as a potential cause leading to the H-mode density limit and is also found to play an important role for the access to small edge-localized modes (ELMs). Density limit disruptions have been successfully avoided using a path-oriented approach to disruption handling and progress has been made in understanding the dissipation and avoidance of runaway electron beams. ELM suppression with resonant magnetic perturbations is now routinely achieved reaching transiently . This gives new insight into the field penetration physics, in particular with respect to plasma flows. Modelling agrees well with plasma response measurements and a helically localised ballooning structure observed prior to the ELM is evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D perturbations on heat load patterns and fast-ion losses have been further elaborated. Progress has also been made in understanding the ELM cycle itself. Here, new fast measurements of and E r allow for inter ELM transport analysis confirming that E r is dominated by the diamagnetic term even for fast timescales. New analysis techniques allow detailed comparison of the ELM crash and are in good agreement with nonlinear MHD modelling. The observation of accelerated ions during the ELM crash can be seen as evidence for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable operational regime in DEMO studies of 'natural' no ELM regimes have been extended. Stable I-modes up to have been characterised using -feedback. Core physics has been advanced by more detailed characterisation of the turbulence with new measurements such as the eddy tilt angle - measured for the first time - or the cross-phase angle of and fluctuations. These new data put strong constraints on gyro-kinetic turbulence modelling. In addition, carefully executed studies in different main species (H, D and He) and with different heating mixes highlight the importance of the collisional energy exchange for interpreting energy confinement. A new regime with a hollow profile now gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear interactions of energetic particle modes despite the sub-Alfvénic beam energy. This will help to validate the fast-ion codes for predicting ITER and DEMO.
  •  
3.
  • Schwieger, Sarah, et al. (författare)
  • Rewetting prolongs root growing season in minerotrophic peatlands and mitigates negative drought effects
  • 2022
  • Ingår i: Journal of Applied Ecology. - : John Wiley & Sons. - 0021-8901 .- 1365-2664. ; 59:8, s. 2106-2116
  • Tidskriftsartikel (refereegranskat)abstract
    • Root phenology influences the timing of plant resource acquisition and carbon fluxes into the soil. This is particularly important in fen peatlands, in which peat is primarily formed by roots and rhizomes of vascular plants. However, most fens in Central Europe are drained for agriculture, leading to large carbon losses, and further threatened by increasing frequency and intensity of droughts. Rewetting fens aims to restore the original carbon sink, but how root phenology is affected by drainage and rewetting is largely unknown.We monitored root phenology with minirhizotrons in drained and rewetted fens (alder forest, percolation fen and coastal fen) as well as its soil temperature and water table depth during the 2018 drought. For each fen type, we studied a drained site and a site that was rewetted ~25 years ago, while all the sites studied had been drained for almost a century.Overall, the growing season was longer with rewetting, allowing roots to grow over a longer period in the year and have a higher root production than under drainage. With increasing depth, the growing season shifted to later in time but remained a similar length, and the relative importance of soil temperature for root length changes increased with soil depth.Synthesis and applications: Rewetting extended the growing season of roots, highlighting the importance of phenology in explaining root productivity in peatlands. A longer growing season allows a longer period of carbon sequestration in form of root biomass and promotes the peatlands' carbon sink function, especially through longer growth in deep soil layers. Thus, management practices that focus on rewetting peatland ecosystems are necessary to maintain their function as carbon sinks, particularly under drought conditions, and are a top priority to reduce carbon emissions and address climate change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy