SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kainulainen Jouni 1979) "

Sökning: WFRF:(Kainulainen Jouni 1979)

  • Resultat 1-25 av 35
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersen, M., et al. (författare)
  • The Stellar Content of the Infalling Molecular Clump G286.21+0.17
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 850:1, s. 12-19
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2017. The American Astronomical Society. All rights reserved. The early evolution during massive star cluster formation is still uncertain. Observing embedded clusters at their earliest stages of formation can provide insight into the spatial and temporal distribution of the stars and thus probe different star cluster formation models. We present near-infrared imaging of an 8′ × 13′ (5.4 pc × 8.7 pc) region around the massive infalling clump G286.21+0.17 (also known as BYF73). The stellar content across the field is determined and photometry is derived in order to obtain stellar parameters for the cluster members. We find evidence for some sub-structure (on scales less than a parsec in diameter) within the region with apparently at least three different sub-clusters associated with the molecular clump based on differences in extinction and disk fractions. At the center of the clump we identify a deeply embedded sub-cluster. Near-infrared excess is detected for 39%-44% in the two sub-clusters associated with molecular material and 27% for the exposed cluster. Using the disk excess as a proxy for age, this suggests the clusters are very young. The current total stellar mass is estimated to be at least 200 M o . The molecular core hosts a rich population of pre-main-sequence stars. There is evidence for multiple events of star formation both in terms of the spatial distribution within the star-forming region and possibly from the disk frequency.
  •  
2.
  • Barnes, Ashley T., et al. (författare)
  • Young massive star cluster formation in the Galactic Centre is driven by global gravitational collapse of high-mass molecular clouds
  • 2019
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 486:1, s. 283-303
  • Tidskriftsartikel (refereegranskat)abstract
    • Young massive clusters (YMCs) are the most compact, high-mass stellar systems still forming at the present day. The precursor clouds to such systems are, however, rare due to their large initial gas mass reservoirs and rapid dispersal time-scales due to stellar feedback. None the less, unlike their high-z counterparts, these precursors are resolvable down to the sites of individually forming stars, and hence represent the ideal environments in which to test the current theories of star and cluster formation. Using high angular resolution (1 arcsec / 0.05 pc) and sensitivity ALMA observations of two YMC progenitor clouds in the Galactic Centre, we have identified a suite of molecular line transitions - e.g. c-C3H2 (7 - 6) - that are believed to be optically thin, and reliably trace the gas structure in the highest density gas on star-forming core scales. We conduct a virial analysis of the identified core and proto-cluster regions, and show that half of the cores (5/10) and both proto-clusters are unstable to gravitational collapse. This is the first kinematic evidence of global gravitational collapse in YMC precursor clouds at such an early evolutionary stage. The implications are that if these clouds are to form YMCs, then they likely do so via the 'conveyor-belt' mode, whereby stars continually form within dispersed dense gas cores as the cloud undergoes global gravitational collapse. The concurrent contraction of both the cluster-scale gas and embedded (proto-)stars ultimately leads to the high (proto-)stellar density in YMCs.
  •  
3.
  • Beuther, H., et al. (författare)
  • OH maser emission in the THOR survey of the northern Milky Way
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 628
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. OH masers trace diverse physical processes, from the expanding envelopes around evolved stars to star-forming regions or supernovae remnants. Providing a survey of the ground-state OH maser transitions in the northern hemisphere inner Milky Way facilitates the study of a broad range of scientific topics. Aims. We want to identify the ground-state OH masers at similar to 18 cm wavelength in the area covered by The HI/OH/Recombination line survey of the Milky Way (THOR). We will present a catalogue of all OH maser features and their possible associated environments. Methods. The THOR survey covers longitude and latitude ranges of 14 degrees.3 < l < 66 degrees.8 and b < +/- 1 degrees.25. All OH ground state lines (2)Pi(3/2) (J = 3/2) at 1612 (F = 1-2), 1665 (F = 1-1), 1667 (F = 2-2) and 1720 MHz (F = 2-1) have been observed, employing the Very Large Array (VLA) in its C configuration. The spatial resolution of the data varies between 12.5 '' and 19 '', the spectral resolution is 1.5 km s(-1), and the rms sensitivity of the data is similar to 10 mJy beam(-1) per channel. Results. We identify 1585 individual maser spots (corresponding to single spectral features) distributed over 807 maser sites (regions of size similar to 10(3)-10(4) AU). Based on different criteria from spectral profiles to literature comparison, we try to associate the maser sites with astrophysical source types. Approximately 51% of the sites exhibit the double-horned 1612 MHz spectra typically emitted from the expanding shells of evolved stars. The separations of the two main velocity features of the expanding shells typically vary between 22 and 38 km s(-1). In addition to this, at least 20% of the maser sites are associated with star-forming regions. While the largest fraction of 1720 MHz maser spots (21 out of 53) is associated with supernova remnants, a significant fraction of the 1720 MHz maser spots (17) are also associated with star-forming regions. We present comparisons to the thermal (CO)-C-13(1-0) emission as well as to other surveys of class II CH3OH and H2O maser emission. The catalogue attempts to present associations to astrophysical sources where available, and the full catalogue is available in electronic form. Conclusions. This OH maser catalogue presents a unique resource of stellar and interstellar masers in the northern hemisphere. It provides the basis for a diverse range of follow-up studies from envelopes around evolved stars to star-forming regions and Supernova remnants.
  •  
4.
  • Bieging, John H., et al. (författare)
  • The Arizona Radio Observatory CO Mapping Survey of Galactic Molecular Clouds. VI. The Cep OB3 Cloud (Cepheus B and C) in CO J=2-1, (CO)-C-13 J=2-1, and CO J=3-2
  • 2018
  • Ingår i: Astrophysical Journal, Supplement Series. - : American Astronomical Society. - 1538-4365 .- 0067-0049. ; 238:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present (1) new fully sampled maps of CO and (CO)-C-13 J = 2-1 emission and CO J = 3-2 emission toward the molecular clouds Cep B and C, associated with the Cep OB3 association; (2) a map of extinction, A(V), derived from IR colors of background stars; and (3) the distribution of young stellar objects (YSOs) over the same field as the molecular maps. An LTE analysis of the CO and (CO)-C-13. maps yields the distribution of molecular column densities and temperatures. Substantial variations are evident across the clouds; smaller subregions show correlations between molecular properties and dust extinction, consistent with a picture of outer photodissociation regions with a layer of CO-dark molecular gas, a CO self-shielded interior, and an inner cold dense region where CO is largely depleted onto grains. Comparing the distribution of YSOs with molecular gas surface density shows a power-law relation very similar in slope to that for the giant molecular cloud associated with the H II region Sh2-235 from a previous paper in this series that employed the same methodology. We note the presence of several compact, isolated CO emission sources in the J = 3-2 maps. The gas temperature and (CO)-C-13. velocity dispersion yield a map of the sonic Mach number, which varies across the cloud but always exceeds unity, confirming the pervasiveness of supersonic turbulence over length scales greater than or similar to 0.1 pc (the map resolution). We also compute a J = 2-1 CO X-factor that varies with position but is, on average, within. 20% of the Galactic average derived from CO J = 1-0 observations.
  •  
5.
  • Bron, E., et al. (författare)
  • Tracers of the ionization fraction in dense and translucent gas: I. Automated exploitation of massive astrochemical model grids
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 645
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The ionization fraction in the neutral interstellar medium (ISM) plays a key role in the physics and chemistry of the ISM, from controlling the coupling of the gas to the magnetic field to allowing fast ion-neutral reactions that drive interstellar chemistry. Most estimations of the ionization fraction have relied on deuterated species such as DCO+, whose detection is limited to dense cores representing an extremely small fraction of the volume of the giant molecular clouds that they are part of. As large field-of-view hyperspectral maps become available, new tracers may be found. The growth of observational datasets is paralleled by the growth of massive modeling datasets and new methods need to be devised to exploit the wealth of information they contain. Aims. We search for the best observable tracers of the ionization fraction based on a grid of astrochemical models, with the broader aim of finding a general automated method applicable to searching for tracers of any unobservable quantity based on grids of models. Methods. We built grids of models that randomly sample a large range of physical conditions (unobservable quantities such as gas density, temperature, elemental abundances, etc.) and computed the corresponding observables (line intensities, column densities) and the ionization fraction. We estimated the predictive power of each potential tracer by training a random forest model to predict the ionization fraction from that tracer, based on these model grids. Results. In both translucent medium and cold dense medium conditions, we found several observable tracers with very good predictive power for the ionization fraction. Many tracers in cold dense medium conditions are found to be better and more widely applicable than the traditional DCO+/HCO+ ratio. We also provide simpler analytical fits for estimating the ionization fraction from the best tracers, and for estimating the associated uncertainties. We discuss the limitations of the present study and select a few recommended tracers in both types of conditions. Conclusions. The method presented here is very general and can be applied to the measurement of any other quantity of interest (cosmic ray flux, elemental abundances, etc.) from any type of model (PDR models, time-dependent chemical models, etc.).
  •  
6.
  • Duarte-Cabral, A., et al. (författare)
  • The SEDIGISM survey: Molecular clouds in the inner Galaxy
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 500:3, s. 3027-3049
  • Forskningsöversikt (refereegranskat)abstract
    • We use the 13CO(2-1) emission from the SEDIGISM (Structure, Excitation, and Dynamics of the Inner Galactic InterStellar Medium) high-resolution spectral-line survey of the inner Galaxy, to extract the molecular cloud population with a large dynamic range in spatial scales, using the Spectral Clustering for Interstellar Molecular Emission Segmentation (SCIMES) algorithm. This work compiles a cloud catalogue with a total of 10 663 molecular clouds, 10 300 of which we were able to assign distances and compute physical properties. We study some of the global properties of clouds using a science sample, consisting of 6664 well-resolved sources and for which the distance estimates are reliable. In particular, we compare the scaling relations retrieved from SEDIGISM to those of other surveys, and we explore the properties of clouds with and without high-mass star formation. Our results suggest that there is no single global property of a cloud that determines its ability to form massive stars, although we find combined trends of increasing mass, size, surface density, and velocity dispersion for the sub-sample of clouds with ongoing high-mass star formation. We then isolate the most extreme clouds in the SEDIGISM sample (i.e. clouds in the tails of the distributions) to look at their overall Galactic distribution, in search for hints of environmental effects. We find that, for most properties, the Galactic distribution of the most extreme clouds is only marginally different to that of the global cloud population. The Galactic distribution of the largest clouds, the turbulent clouds and the high-mass star-forming clouds are those that deviate most significantly from the global cloud population. We also find that the least dynamically active clouds (with low velocity dispersion or low virial parameter) are situated further afield, mostly in the least populated areas. However, we suspect that part of these trends may be affected by some observational biases (such as completeness and survey limitations), and thus require further follow up work in order to be confirmed.
  •  
7.
  • Einig, Lucas, et al. (författare)
  • Deep learning denoising by dimension reduction: Application to the ORION-B line cubes
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 677
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The availability of large bandwidth receivers for millimeter radio telescopes allows for the acquisition of position-position-frequency data cubes over a wide field of view and a broad frequency coverage. These cubes contain a lot of information on the physical, chemical, and kinematical properties of the emitting gas. However, their large size coupled with an inhomogenous signal-to-noise ratio (S/N) are major challenges for consistent analysis and interpretation. Aims. We searched for a denoising method of the low S/N regions of the studied data cubes that would allow the low S/N emission to be recovered without distorting the signals with a high S/N. Methods. We performed an in-depth data analysis of the 13CO and C17O (1-0) data cubes obtained as part of the ORION-B large program performed at the IRAM 30 m telescope. We analyzed the statistical properties of the noise and the evolution of the correlation of the signal in a given frequency channel with that of the adjacent channels. This has allowed us to propose significant improvements of typical autoassociative neural networks, often used to denoise hyperspectral Earth remote sensing data. Applying this method to the 13CO (1-0) cube, we were able to compare the denoised data with those derived with the multiple Gaussian fitting algorithm ROHSA, considered as the state-of-the-art procedure for data line cubes. Results. The nature of astronomical spectral data cubes is distinct from that of the hyperspectral data usually studied in the Earth remote sensing literature because the observed intensities become statistically independent beyond a short channel separation. This lack of redundancy in data has led us to adapt the method, notably by taking into account the sparsity of the signal along the spectral axis. The application of the proposed algorithm leads to an increase in the S/N in voxels with a weak signal, while preserving the spectral shape of the data in high S/N voxels. Conclusions. The proposed algorithm that combines a detailed analysis of the noise statistics with an innovative autoencoder architecture is a promising path to denoise radio-astronomy line data cubes. In the future, exploring whether a better use of the spatial correlations of the noise may further improve the denoising performances seems to be a promising avenue. In addition, dealing with the multiplicative noise associated with the calibration uncertainty at high S/N would also be beneficial for such large data cubes.
  •  
8.
  • Gaudel, Mathilde, et al. (författare)
  • Gas kinematics around filamentary structures in the Orion B cloud
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 670
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Understanding the initial properties of star-forming material and how they affect the star formation process is key. From an observational point of view, the feedback from young high-mass stars on future star formation properties is still poorly constrained. Aims. In the framework of the IRAM 30m ORION-B large program, we obtained observations of the translucent (2 ≤ AV < 6 mag) and moderately dense gas (6 ≤ AV < 15 mag), which we used to analyze the kinematics over a field of 5 deg2 around the filamentary structures. Methods. We used the Regularized Optimization for Hyper-Spectral Analysis (ROHSA) algorithm to decompose and de-noise the C 18 O(1−0) and 13CO(1−0) signals by taking the spatial coherence of the emission into account. We produced gas column density and mean velocity maps to estimate the relative orientation of their spatial gradients. Results. We identified three cloud velocity layers at different systemic velocities and extracted the filaments in each velocity layer. The filaments are preferentially located in regions of low centroid velocity gradients. By comparing the relative orientation between the column density and velocity gradients of each layer from the ORION-B observations and synthetic observations from 3D kinematic toy models, we distinguish two types of behavior in the dynamics around filaments: (i) radial flows perpendicular to the filament axis that can be either inflows (increasing the filament mass) or outflows and (ii) longitudinal flows along the filament axis. The former case is seen in the Orion B data, while the latter is not identified. We have also identified asymmetrical flow patterns, usually associated with filaments located at the edge of an H II region. Conclusions. This is the first observational study to highlight feedback from H II regions on filament formation and, thus, on star formation in the Orion B cloud. This simple statistical method can be used for any molecular cloud to obtain coherent information on the kinematics.
  •  
9.
  • Gratier, Pierre, et al. (författare)
  • Quantitative inference of the H2 column densities from 3mm molecular emission: case study towards Orion B
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 645
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Based on the finding that molecular hydrogen is unobservable in cold molecular clouds, the column density measurements of molecular gas currently rely either on dust emission observation in the far-infrared, which requires space telescopes, or on star counting, which is limited in angular resolution by the stellar density. The (sub)millimeter observations of numerous trace molecules can be effective using ground-based telescopes, but the relationship between the emission of one molecular line and the H-2 column density is non-linear and sensitive to excitation conditions, optical depths, and abundance variations due to the underlying physico- chemistry.Aims. We aim to use multi-molecule line emission to infer the H-2 molecular column density from radio observations.Methods. We propose a data-driven approach to determine the H-2 gas column densities from radio molecular line observations. We use supervised machine-learning methods (random forest) on wide-field hyperspectral IRAM-30m observations of the Orion B molecular cloud to train a predictor of the H-2 column density, using a limited set of molecular lines between 72 and 116 GHz as input, and the Herschel-based dust-derived column densities as "ground truth" output.Results. For conditions similar to those of the Orion B molecular cloud, we obtained predictions of the H-2 column density within a typical factor of 1.2 from the Herschel-based column density estimates. A global analysis of the contributions of the different lines to the predictions show that the most important lines are (CO)-C-13(1-0), (CO)-C-12(1-0), (CO)-O-18(1-0), and HCO+(1-0). A detailed analysis distinguishing between diffuse, translucent, filamentary, and dense core conditions show that the importance of these four lines depends on the regime, and that it is recommended that the N2H+(1-0) and CH3OH(2(0)-1(0)) lines be added for the prediction of the H-2 column density in dense core conditions.Conclusions. This article opens a promising avenue for advancing direct inferencing of important physical parameters from the molecular line emission in the millimeter domain. The next step will be to attempt to infer several parameters simultaneously (e.g., the column density and far-UV illumination field) to further test the method.
  •  
10.
  • Hacar, A., et al. (författare)
  • Initial Conditions for Star Formation: a Physical Description of the Filamentary ISM
  • 2023
  • Ingår i: ASP Conference Series. ; 534, s. 153-
  • Konferensbidrag (refereegranskat)abstract
    • The interstellar medium (ISM) contains filamentary structure over a wide range of scales. Understanding the role of this structure, both as a conduit of gas across the scales and a diagnostic tool of local physics, is a major focus of star formation studies. We review recent progress in studying filamentary structure in the ISM, interpreting its properties in terms of physical processes, and exploring formation and evolution scenarios. We include structures from galactic-scale filaments to tenth-of-a-parsec scale filaments, comprising both molecular and atomic structures, from both observational and theoretical perspectives. In addition to the literature overview, we assemble a large amount of catalog data from different surveys and provide the most comprehensive census of filamentary structures to date. Our census consists of 22 803 filamentary structures, facilitating a holistic perspective and new insights. We use our census to conduct a meta-analysis, leading to a description of filament properties over four orders of magnitudes in length and eight in mass. Our analysis emphasize the hierarchical and dynamical nature of filamentary structures. Filaments do not live in isolation, nor they generally resemble static structures close to equilibrium. We propose that accretion during filament formation and evolution sets some of the key scaling properties of filaments. This highlights the role of accretion during filament formation and evolution and also in setting the initial conditions for star formation. Overall, the study of filamentary structures during the past decade has been observationally driven. While great progress has been made on measuring the basic properties of filaments, our understanding of their formation and evolution is clearly lacking. In this context, we identify a number of directions and questions we consider most pressing for the field.
  •  
11.
  • Henshaw, Jonathan D., et al. (författare)
  • Ubiquitous velocity fluctuations throughout the molecular interstellar medium
  • 2020
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 4:11, s. 1064-1071
  • Tidskriftsartikel (refereegranskat)abstract
    • The density structure of the interstellar medium determines where stars form and release energy, momentum and heavy elements, driving galaxy evolution1–4. Density variations are seeded and amplified by gas motion, but the exact nature of this motion is unknown across spatial scales and galactic environments5. Although dense star-forming gas probably emerges from a combination of instabilities6,7, convergent flows8 and turbulence9, establishing the precise origin is challenging because it requires gas motion to be quantified over many orders of magnitude in spatial scale. Here we measure10–12 the motion of molecular gas in the Milky Way and in nearby galaxy NGC 4321, assembling observations that span a spatial dynamic range 10−1–103 pc. We detect ubiquitous velocity fluctuations across all spatial scales and galactic environments. Statistical analysis of these fluctuations indicates how star-forming gas is assembled. We discover oscillatory gas flows with wavelengths ranging from 0.3–400 pc. These flows are coupled to regularly spaced density enhancements that probably form via gravitational instabilities13,14. We also identify stochastic and scale-free velocity and density fluctuations, consistent with the structure generated in turbulent flows9. Our results demonstrate that the structure of the interstellar medium cannot be considered in isolation. Instead, its formation and evolution are controlled by nested, interdependent flows of matter covering many orders of magnitude in spatial scale.
  •  
12.
  • Kainulainen, Jouni, 1979, et al. (författare)
  • Relationship between turbulence energy and density variance in the solar neighbourhood molecular clouds
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 608, s. 3-
  • Tidskriftsartikel (refereegranskat)abstract
    • The relationship between turbulence energy and gas density variance is a fundamental prediction for turbulence-dominated media and is commonly used in analytic models of star formation. We determine this relationship for 15 molecular clouds in the solar neighbourhood. We use the line widths of the CO molecule as the probe of the turbulence energy (sonic Mach number, ℳs) and three-dimensional models to reconstruct the density probability distribution function (ρ-PDF) of the clouds, derived using near-infrared extinction and Herschel dust emission data, as the probe of the density variance (σs). We find no significant correlation between ℳs and σs among the studied clouds, but we cannot rule out a weak correlation either. In the context of turbulence-dominated gas, the range of the ℳs and σs values corresponds to the model predictions. The data cannot constrain whether the turbulence-driving parameter, b, and/or thermal-to-magnetic pressure ratio, β, vary among the sample clouds. Most clouds are not in agreement with field strengths stronger than given by β ≲ 0.05. A model with b2β/ (β + 1) = 0.30 ± 0.06 provides an adequate fit to the cloud sample as a whole. Based on the average behaviour of the sample, we can rule out three regimes: (i) strong compression combined with a weak magnetic field (b ≳ 0.7 and β ≳ 3); (ii) weak compression (b ≲ 0.35); and (iii) a strong magnetic field (β ≲ 0.1). When we include independent magnetic field strength estimates in the analysis, the data rule out solenoidal driving (b < 0.4) for the majority of the solar neighbourhood clouds. However, most clouds have b parameters larger than unity, which indicates a discrepancy with the turbulence-dominated picture; we discuss the possible reasons for this.
  •  
13.
  • Kainulainen, Jouni, 1979, et al. (författare)
  • The effect of viewing angle on the Kennicutt-Schmidt relation of the local molecular clouds
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 659
  • Tidskriftsartikel (refereegranskat)abstract
    • The Gaia data give us an unprecedented view to the three-dimensional (3D) structure of molecular clouds in the solar neighbourhood. We study how the projected areas and masses of clouds, and consequently the Kennicutt-Schmidt (KS) relation, depend on the viewing angle. We derive the probability distributions of the projected areas and masses for nine clouds within 400 pc of the Sun using 3D dust distribution data from the literature. We find that the viewing angle can have a dramatic effect on the observed areas and masses of individual clouds. The joint probability distributions of the areas and masses are strongly correlated, relatively flat, and can show multiple peaks. The typical ranges and 50% quartiles of the distributions are roughly 100-200% and 20-80% of the median value, respectively, making viewing angle effects important for all individual clouds. The threshold value used to define the cloud areas is also important; our analysis suggests that the clouds become more anisotropic for smaller thresholds (larger scales). On average, the areas and masses of the plane-of-the-sky and face-on projections agree, albeit with a large scatter. This suggests that sample averages of areas and masses are relatively free of viewing angle effects, which is important to facilitate comparisons of extragalactic and Galactic data. Ultimately, our results demonstrate that a cloud's location in the KS relation is affected by the viewing angle in a non-trivial manner. However, the KS relation of our sample as a whole is not strongly affected by these effects, because the covariance of the areas and masses causes the observed mean column density to remain relatively constant.
  •  
14.
  • Mattern, M., et al. (författare)
  • SEDIGISM: the kinematics of ATLASGAL filaments
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 619
  • Tidskriftsartikel (refereegranskat)abstract
    • Analyzing the kinematics of filamentary molecular clouds is a crucial step toward understanding their role in the star formation process. Therefore, we study the kinematics of 283 filament candidates in the inner Galaxy, that were previously identified in the ATLASGAL dust continuum data. The (CO)-C-13(2 - 1) and (CO)-O-18(2 - 1) data of the SEDIGISM survey (Structure, Excitation, and Dynamics of the Inner Galactic Inter Stellar Medium) allows us to analyze the kinematics of these targets and to determine their physical properties at a resolution of 30 '' and 0.25 km s(-1). To do so, we developed an automated algorithm to identify all velocity components along the line-of-sight correlated with the ATLASGAL dust emission, and derive size, mass, and kinematic properties for all velocity components. We find two-third of the filament candidates are coherent structures in position-position-velocity space. The remaining candidates appear to be the result of a superposition of two or three filamentary structures along the line-of- sight. At the resolution of the data, on average the filaments are in agreement with Plummer-like radial density profiles with a power-law exponent of p approximate to 1.5 +/- 0.5, indicating that they are typically embedded in a molecular cloud and do not have a well-defined outer radius. Also, we find a correlation between the observed mass per unit length and the velocity dispersion of the filament of m proportional to o(v)(2). We show that this relation can be explained by a virial balance between self-gravity and pressure. Another possible explanation could be radial collapse of the filament, where we can exclude infall motions close to the free-fall velocity.
  •  
15.
  • Mattern, M., et al. (författare)
  • Structure and fragmentation of a high line-mass filament: Nessie
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 616
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. An increasing number of hundred-parsec-scale, high line-mass filaments are being detected in the Galaxy. Their evolutionary path, including fragmentation towards star formation, is virtually unknown. Aims. We characterize the fragmentation within the hundred-parsec-scale, high line-mass Nessie filament, covering size-scales in the range similar to 0.1-100 pc. We also connect the small-scale fragments to the star-forming potential of the cloud. Methods. We combine near-infrared data from the VISTA Variables in the Via Lactea (VVV) survey with mid-infrared Spitzer/GLIMPSE data to derive a high-resolution dust extinction map for Nessie. We then apply a wavelet decomposition technique on the map to analyze the fragmentation characteristics of the cloud. The characteristics are then compared with predictions from gravitational fragmentation models. We compare the detected objects to those identified at a resolution approximately ten times lower from ATLASGAL 870 mu m dust emission data. Results. We present a high-resolution extinction map of Nessie (2 '' full-width-half-max, FWHM, corresponding to 0.03 pc). We estimate the mean line mass of Nessie to be similar to 627 M-circle dot pc(-1) and the distance to be similar to 3.5 kpc. We find that Nessie shows fragmentation at multiple size scales. The median nearest-neighbor separations of the fragments at all scales are within a factor of two of the Jeans' length at that scale. However, the relationship between the mean densities of the fragments and their separations is significantly shallower than expected for Jeans' fragmentation. The relationship is similar to the one predicted for a filament that exhibits a Larson-like scaling between size-scale and velocity dispersion; such a scaling may result from turbulent support. Based on the number of young stellar objects (YSOs) in the cloud, we estimate that the star formation rate (SFR) of Nessie is similar to 371 M-circle dot Myr(-1); similar values result if using the number of dense cores, or the amount of dense gas, as the proxy of star formation. The star formation efficiency is 0.017. These numbers indicate that by its star-forming content, Nessie is comparable to the Solar neighborhood giant molecular clouds like Orion A.
  •  
16.
  •  
17.
  • Panopoulou, G. V., et al. (författare)
  • The width of Herschel filaments varies with distance
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 657
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Filamentary structures in nearby molecular clouds have been found to exhibit a characteristic width of 0.1 pc, as observed in dust emission. Understanding the origin of this universal width has become a topic of central importance in the study of molecular cloud structure and the early stages of star formation. Aims. We investigate how the recovered widths of filaments depend on the distance from the observer by using previously published results from the Herschel Gould Belt Survey. Methods. We obtained updated estimates on the distances to nearby molecular clouds observed with Herschel by using recent results based on 3D dust extinction mapping and Gaia. We examined the widths of filaments from individual clouds separately, as opposed to treating them as a single population. We used these per-cloud filament widths to search for signs of variation amongst the clouds of the previously published study. Results. We find a significant dependence of the mean per-cloud filament width with distance. The distribution of mean filament widths for nearby clouds is incompatible with that of farther away clouds. The mean per-cloud widths scale with distance approximately as 4-5 times the beam size. We examine the effects of resolution by performing a convergence study of a filament profile in the Herschel image of the Taurus Molecular Cloud. We find that resolution can severely affect the shapes of radial profiles over the observed range of distances. Conclusions. We conclude that the data are inconsistent with 0.1 pc being the universal characteristic width of filaments.
  •  
18.
  • Rezaeikhoshbakht, Sara, 1984, et al. (författare)
  • Three-dimensional Shape Explains Star Formation Mystery of California and Orion A
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The new Gaia data release (EDR3) with improved astrometry has opened a new era in studying our Milky Way in fine detail. We use Gaia EDR3 astrometry together with 2MASS and WISE photometry to study two of the most massive molecular clouds in the solar vicinity: Orion A and California. Despite having remarkable similarities in the plane of the sky in terms of shape, size, and extinction, California has an order of magnitude lower star formation efficiency. We use our state-of-the-art dust mapping technique to derive the detailed three-dimensional (3D) structure of the two clouds, taking into account both distance and extinction uncertainties, and a full 3D spatial correlation between neighboring points. We discover that, despite the apparent filamentary structure in the plane of the sky, California is a flat 120 pc-long sheet extending from 410 to 530 pc. We show that not only Orion A and California differ substantially in their 3D shapes, but also Orion A has considerably higher density substructures in 3D than California. This result presents a compelling reason why the two clouds have different star formation activities. We also demonstrate how the viewing angle of California can substantially change the cloud's position in the Kennicutt-Schmidt relation. This underlines the importance of 3D information in interpreting star formation relations and challenges studies that rely solely on the column density thresholds to determine star formation activities in molecular clouds. Finally, we provide accurate distance estimates to multiple lines of sight toward various parts of the two clouds.
  •  
19.
  • Riener, M., et al. (författare)
  • Autonomous Gaussian decomposition of the Galactic Ring Survey I. Global statistics and properties of the (CO)-C-13 emission data
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 633
  • Tidskriftsartikel (refereegranskat)abstract
    • The analysis of large molecular line surveys of the Galactic plane is essential for our understanding of the gas kinematics on Galactic scales and, in particular, its link with the formation and evolution of dense structures in the interstellar medium. An approximation of the emission peaks with Gaussian functions allows for an efficient and straightforward extraction of useful physical information contained in the shape and Doppler-shifted frequency of the emission lines contained in these enormous data sets. In this work, we present an overview and the first results of a Gaussian decomposition of the entire Galactic Ring Survey (GRS) (CO)-C-13 (1-0) data that consists of about 2.3 million spectra. We performed the decomposition with the fully automated GAUSSPY+ algorithm and fitted about 4.6 million Gaussian components to the GRS spectra. These decomposition results enable novel and unexplored ways to interpret and study the gas velocity structure. We discuss the statistics of the fit components and relations between the fitted intensities, velocity centroids, and velocity dispersions. We find that the magnitude of the velocity dispersion values increase towards the inner Galaxy and around the Galactic midplane, which we speculate is partly due to the influence of the Galactic bar and regions with higher non-thermal motions located in the midplane, respectively. We also used our decomposition results to infer global properties of the gas emission and find that the number of fit components used per spectrum is indicative of the amount of structure along the line of sight. We find that the emission lines from regions located on the far side of the Galaxy show increased velocity dispersion values, which are likely due to beam averaging effects. We demonstrate how this trend has the potential to aid in characterising Galactic structure by disentangling emission that belongs to the nearby Aquila Rift molecular cloud from emission that is more likely associated with the Perseus and Outer spiral arms. With this work, we also make our entire decomposition results available.
  •  
20.
  • Riener, Manuel, et al. (författare)
  • Autonomous Gaussian decomposition of the Galactic Ring Survey: II. The Galactic distribution of 13CO
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 640
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge about the distribution of CO emission in the Milky Way is essential to understanding the impact of the Galactic environment on the formation and evolution of structures in the interstellar medium. However, our current insight as to the fraction of CO in the spiral arm and interarm regions is still limited by large uncertainties in assumed rotation curve models or distance determination techniques. In this work we use the Bayesian approach from Reid et al. (2016, ApJ, 823, 77; 2019, ApJ, 885, 131), which is based on our most precise knowledge at present about the structure and kinematics of the Milky Way, to obtain the current best assessment of the Galactic distribution of 13CO from the Galactic Ring Survey. We performed two different distance estimates that either included (Run A) or excluded (Run B) a model for Galactic features, such as spiral arms or spurs. We also included a prior for the solution of the kinematic distance ambiguity that was determined from a compilation of literature distances and an assumed size-linewidth relationship. Even though the two distance runs show strong differences due to the prior for Galactic features for Run A and larger uncertainties due to kinematic distances in Run B, the majority of their distance results are consistent with each other within the uncertainties. We find that the fraction of 13CO emission associated with spiral arm features ranges from 76 to 84% between the two distance runs. The vertical distribution of the gas is concentrated around the Galactic midplane, showing full-width at half-maximum values of ~75 pc. We do not find any significant difference between gas emission properties associated with spiral arm and interarm features. In particular, the distribution of velocity dispersion values of gas emission in spurs and spiral arms is very similar. We detect a trend of higher velocity dispersion values with increasing heliocentric distance, which we, however, attribute to beam averaging effects caused by differences in spatial resolution. We argue that the true distribution of the gas emission is likely more similar to a combination of the two distance results discussed, and we highlight the importance of using complementary distance estimations to safeguard against the pitfalls of any single approach. We conclude that the methodology presented in this work is a promising way to determine distances to gas emission features in Galactic plane surveys.
  •  
21.
  • Riener, M., et al. (författare)
  • GAUSSPY+: A fully automated Gaussian decomposition package for emission line spectra
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 628
  • Tidskriftsartikel (refereegranskat)abstract
    • Our understanding of the dynamics of the interstellar medium is informed by the study of the detailed velocity structure of emission line observations. One approach to study the velocity structure is to decompose the spectra into individual velocity components; this leads to a description of the data set that is significantly reduced in complexity. However, this decomposition requires full automation lest it become prohibitive for large data sets, such as Galactic plane surveys. We developed GAUSSPY+, a fully automated Gaussian decomposition package that can be applied to emission line data sets, especially large surveys of HI and isotopologues of CO. We built our package upon the existing GAUSSPY algorithm and significantly improved its performance for noisy data. New functionalities of GAUSSPY+ include: (i) automated preparatory steps, such as an accurate noise estimation, which can also be used as stand-alone applications; (ii) an improved fitting routine; (iii) an automated spatial refitting routine that can add spatial coherence to the decomposition results by refitting spectra based on neighbouring fit solutions. We thoroughly tested the performance of GAUSSPY+ on synthetic spectra and a test field from the Galactic Ring Survey. We found that GAUSSPY+ can deal with cases of complex emission and even low to moderate signal-to-noise values.
  •  
22.
  • Roueff, Antoine, et al. (författare)
  • C18O, 13CO, and 12CO abundances and excitation temperatures in the Orion B molecular cloud: Analysis of the achievable precision in modeling spectral lines within the approximation of the local thermodynamic equilibrium
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 645
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. CO isotopologue transitions are routinely observed in molecular clouds for the purpose of probing the column density of the gas and the elemental ratios of carbon and oxygen, in addition to tracing the kinematics of the environment. Aims. Our study is aimed at estimating the abundances, excitation temperatures, velocity field, and velocity dispersions of the three main CO isotopologues towards a subset of the Orion B molecular cloud, which includes IC 434, NGC 2023, and the Horsehead pillar. Methods. We used the Cramer Rao bound (CRB) technique to analyze and estimate the precision of the physical parameters in the framework of local-thermodynamic-equilibrium (LTE) excitation and radiative transfer with added white Gaussian noise. We propose a maximum likelihood estimator to infer the physical conditions from the 1-0 and 2-1 transitions of CO isotopologues. Simulations show that this estimator is unbiased and proves efficient for a common range of excitation temperatures and column densities (Tex > 6 K, N > 1014-1015 cm-2). Results. Contrary to general assumptions, the various CO isotopologues have distinct excitation temperatures and the line intensity ratios between different isotopologues do not accurately reflect the column density ratios. We find mean fractional abundances that are consistent with previous determinations towards other molecular clouds. However, significant local deviations are inferred, not only in regions exposed to the UV radiation field, but also in shielded regions. These deviations result from the competition between selective photodissociation, chemical fractionation, and depletion on grain surfaces. We observe that the velocity dispersion of the C18O emission is 10% smaller than that of 13CO. The substantial gain resulting from the simultaneous analysis of two different rotational transitions of the same species is rigorously quantified. Conclusions. The CRB technique is a promising avenue for analyzing the estimation of physical parameters from the fit of spectral lines. Future works will generalize its application to non-LTE excitation and radiative transfer methods.
  •  
23.
  • Schuller, F., et al. (författare)
  • The SEDIGISM survey: First Data Release and overview of the Galactic structure
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 500:3, s. 3064-3082
  • Tidskriftsartikel (refereegranskat)abstract
    • The SEDIGISM (Structure, Excitation and Dynamics of the Inner Galactic InterstellarMedium) survey used the APEX telescope to map 84 deg(2) of the Galactic plane between l = -60 degrees and +31 degrees in several molecular transitions, including (CO)-C-13(2 - 1) and (CO)-O-18(2 - 1), thus probing the moderately dense (similar to 10(3) cm(-3)) component of the interstellar medium. With an angular resolution of 30 arcsec and a typical 1 sigma sensitivity of 0.8-1.0K at 0.25 km s(-1) velocity resolution, it gives access to a wide range of structures, from individual star-forming clumps to giant molecular clouds and complexes. The coverage includes a good fraction of the first and fourth Galactic quadrants, allowing us to constrain the large-scale distribution of cold molecular gas in the inner Galaxy. In this paper, we provide an updated overview of the full survey and the data reduction procedures used. We also assess the quality of these data and describe the data products that are being made publicly available as part of this First Data Release (DR1). We present integrated maps and position-velocity maps of the molecular gas and use these to investigate the correlation between the molecular gas and the large-scale structural features of the Milky Way such as the spiral arms, Galactic bar and Galactic Centre. We find that approximately 60 per cent of the molecular gas is associated with the spiral arms and these appear as strong intensity peaks in the derived Galactocentric distribution. We also find strong peaks in intensity at specific longitudes that correspond to the Galactic Centre and well-known star-forming complexes, revealing that the 13CO emission is concentrated in a small number of complexes rather than evenly distributed along spiral arms.
  •  
24.
  • Soler, J. D., et al. (författare)
  • Histogram of oriented gradients: a technique for the study of molecular cloud formation
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 622
  • Tidskriftsartikel (refereegranskat)abstract
    • We introduce the histogram of oriented gradients (HOG), a tool developed for machine vision that we propose as a new metric for the systematic characterization of spectral line observations of atomic and molecular gas and the study of molecular cloud formation models. In essence, the HOG technique takes as input extended spectral-line observations from two tracers and provides an estimate of their spatial correlation across velocity channels. We characterized HOG using synthetic observations of HI and (CO)-C-13(J = 1 -> 0) emission from numerical simulations of magnetohydrodynamic (MHD) turbulence leading to the formation of molecular gas after the collision of two atomic clouds. We found a significant spatial correlation between the two tracers in velocity channels where v(HI) approximate to v(13CO), almost independent of the orientation of the collision with respect to the line of sight. Subsequently, we used HOG to investigate the spatial correlation of the HI, from The HI/OH/recombination line survey of the inner Milky Way (THOR), and the (CO)-C-13(J = 1 -> 0) emission from the Galactic Ring Survey (GRS), toward the portion of the Galactic plane 33.degrees 75 <= l <= 35.degrees 25 and vertical bar b vertical bar <= 1.degrees 25. We found a significant spatial correlation between the two tracers in extended portions of the studied region. Although some of the regions with high spatial correlation are associated with HI self-absorption (HISA) features, suggesting that it is produced by the cold atomic gas, the correlation is not exclusive to this kind of region. The HOG results derived for the observational data indicate significant differences between individual regions: some show spatial correlation in channels around v(HI) approximate to v(13CO) while others present spatial correlations in velocity channels separated by a few kilometers per second. We associate these velocity offsets to the effect of feedback and to the presence of physical conditions that are not included in the atomic-cloud-collision simulations, such as more general magnetic field configurations, shear, and global gas infall.
  •  
25.
  • Spilker, Andri, 1992, et al. (författare)
  • Bird's eye view of molecular clouds in the Milky Way I. Column density and star formation from sub-parsec to kiloparsec scales
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 653
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Describing how the properties of the interstellar medium are combined across various size scales is crucial for understanding star formation scaling laws and connecting Galactic and extragalactic data of molecular clouds. Aims. We describe how the statistical structure of the clouds and its connection to star formation changes from sub-parsec to kiloparsec scales in a complete region within the Milky Way disk. Methods. We built a census of molecular clouds within 2 kpc from the Sun using data from the literature. We examined the dust-based column density probability distributions (N-PDFs) of the clouds and their relation to star formation as traced by young stellar objects (YSOs). We then examined our survey region from the outside, within apertures of varying sizes, and describe how the N-PDFs and their relation to star formation changes with the size scale. Results. We present a census of the molecular clouds within 2 kpc distance, including 72 clouds and YSO counts for 44 of them. The N-PDFs of the clouds are not well described by any single simple model; use of any single model may bias the interpretation of the N-PDFs. The top-heaviness of the N-PDFs correlates with star formation activity, and the correlation changes with Galactic environment (spiral- and inter-arm regions). We find that the density contrast of clouds may be more intimately linked to star formation than the dense gas mass fraction. The aperture-averaged N-PDFs vary with the size scale and are more top-heavy for larger apertures. The top-heaviness of the aperture N-PDFs correlates with star formation activity up to roughly 0.5 kpc, depending on the environment. Our results suggest that the relations between cloud structure and star formation are environment specific and best captured by relative quantities (e.g. the density contrast). Finally, we show that the density structures of individual clouds give rise to a kiloparsec-scale Kennicutt-Schmidt relation as a combination of sampling effects and blending of different galactic environments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 35

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy