SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kantanen Juha) "

Sökning: WFRF:(Kantanen Juha)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Larsson, Martin N. A., et al. (författare)
  • Ancient Sheep Genomes reveal four Millennia of North European Short-Tailed Sheep in the Baltic Sea region
  • 2024
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press. - 1759-6653. ; 16:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Sheep are among the earliest domesticated livestock species, with a wide variety of breeds present today. However, it remains unclear how far back this diversity goes, with formal documentation only dating back a few centuries. North European short-tailed (NEST) breeds are often assumed to be among the oldest domestic sheep populations, even thought to represent relicts of the earliest sheep expansions during the Neolithic period reaching Scandinavia <6,000 years ago. This study sequenced the genomes (up to 11.6X) of five sheep remains from the Baltic islands of Gotland and Åland, dating from the Late Neolithic (∼4,100 cal BP) to historical times (∼1,600 CE). Our findings indicate that these ancient sheep largely possessed the genetic characteristics of modern NEST breeds, suggesting a substantial degree of long-term continuity of this sheep type in the Baltic Sea region. Despite the wide temporal spread, population genetic analyses show high levels of affinity between the ancient genomes and they also exhibit relatively high genetic diversity when compared to modern NEST breeds, implying a loss of diversity in most breeds during the last centuries associated with breed formation and recent bottlenecks. Our results shed light on the development of breeds in Northern Europe specifically as well as the development of genetic diversity in sheep breeds, and their expansion from the domestication center in general.
  •  
3.
  • Niemi, Marianna, et al. (författare)
  • Mitochondrial DNA and Y-chromosomal diversity in ancient populations of domestic sheep (Ovis aries) in Finland : comparison with contemporary sheep breeds
  • 2013
  • Ingår i: Genetics Selection Evolution. - : Springer Science and Business Media LLC. - 0999-193X .- 1297-9686. ; 45, s. 2-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Several molecular and population genetic studies have focused on the native sheep breeds of Finland. In this work, we investigated their ancestral sheep populations from Iron Age, Medieval and Post-Medieval periods by sequencing a partial mitochondrial DNA D-loop and the 5'-promoter region of the SRY gene. We compared the maternal (mitochondrial DNA haplotypes) and paternal (SNP oY1) genetic diversity of ancient sheep in Finland with modern domestic sheep populations in Europe and Asia to study temporal changes in genetic variation and affinities between ancient and modern populations. Results: A 523-bp mitochondrial DNA sequence was successfully amplified for 26 of 36 sheep ancient samples i.e. five, seven and 14 samples representative of Iron Age, Medieval and Post-Medieval sheep, respectively. Genetic diversity was analyzed within the cohorts. This ancient dataset was compared with present-day data consisting of 94 animals from 10 contemporary European breeds and with GenBank DNA sequence data to carry out a haplotype sharing analysis. Among the 18 ancient mitochondrial DNA haplotypes identified, 14 were present in the modern breeds. Ancient haplotypes were assigned to the highly divergent ovine haplogroups A and B, haplogroup B being the major lineage within the cohorts. Only two haplotypes were detected in the Iron Age samples, while the genetic diversity of the Medieval and Post-Medieval cohorts was higher. For three of the ancient DNA samples, Y-chromosome SRY gene sequences were amplified indicating that they originated from rams. The SRY gene of these three ancient ram samples contained SNP G-oY1, which is frequent in modern north-European sheep breeds. Conclusions: Our study did not reveal any sign of major population replacement of native sheep in Finland since the Iron Age. Variations in the availability of archaeological remains may explain differences in genetic diversity estimates and patterns within the cohorts rather than demographic events that occurred in the past. Our ancient DNA results fit well with the genetic context of domestic sheep as determined by analyses of modern north-European sheep breeds.
  •  
4.
  • Svensson, Emma M, 1979- (författare)
  • Detecting Sex and Selection in Ancient Cattle Remains Using Single Nucleotide Polymorphisms
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • All contemporary taurine cattle originated some 10,000 years ago when their wild ancestor, the aurochs, was domesticated in the Near East. Although the aurochs was widespread also in Europe, there is no evidence for a local domestication. The aurochs has been extinct since 1627 and therefore little is known about its biology. Following domestication, cattle were selected for traits of interest to humans. All modern cattle breeds were developed in the 19th century and the only sources of information about prehistoric breeding practices, and breeds, come from a few ancient Roman Empire and medieval European written accounts. The aim for this thesis was to investigate the effects early selection may have had on the cattle genome and to investigate genetic variation in European aurochs. Using second-generation sequencing and coalescent simulation analyses of aurochs Y chromosomal DNA, I estimated effective population size to between 20,000-80,000 aurochs bulls, indicating that a large population was present when domestic cattle entered Europe. A Y chromosomal SNP revealed that the two male lineages present in modern cattle were also present in European aurochs, and that the frequency of these lineages in domestic cattle fluctuated over time. This indicates that cattle were mobile and that bottlenecks, possibly due to selective breeding, occurred. I used nuclear SNPs to trace genetic variation in North European cattle through time and show that when genetics is combined with archaeology and osteology, even small but notable changes in the use of cattle can be detected. There has been a significant decrease in genetic variation over time, with the most dramatic changes associated with the formation of breeds during the 19th century.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy