SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kautz A.) "

Sökning: WFRF:(Kautz A.)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bruggmann, P., et al. (författare)
  • Historical epidemiology of hepatitis C virus (HCV) in selected countries
  • 2014
  • Ingår i: Journal of Viral Hepatitis. - Hoboken : Wiley-Blackwell. - 1352-0504 .- 1365-2893. ; 21, s. 5-33
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic infection with hepatitis C virus (HCV) is a leading indicator for liver disease. New treatment options are becoming available, and there is a need to characterize the epidemiology and disease burden of HCV. Data for prevalence, viremia, genotype, diagnosis and treatment were obtained through literature searches and expert consensus for 16 countries. For some countries, data from centralized registries were used to estimate diagnosis and treatment rates. Data for the number of liver transplants and the proportion attributable to HCV were obtained from centralized databases. Viremic prevalence estimates varied widely between countries, ranging from 0.3% in Austria, England and Germany to 8.5% in Egypt. The largest viremic populations were in Egypt, with 6358000 cases in 2008 and Brazil with 2106000 cases in 2007. The age distribution of cases differed between countries. In most countries, prevalence rates were higher among males, reflecting higher rates of injection drug use. Diagnosis, treatment and transplant levels also differed considerably between countries. Reliable estimates characterizing HCV-infected populations are critical for addressing HCV-related morbidity and mortality. There is a need to quantify the burden of chronic HCV infection at the national level.
  •  
2.
  • Razavi, H., et al. (författare)
  • The present and future disease burden of hepatitis C virus (HCV) infection with today's treatment paradigm
  • 2014
  • Ingår i: Journal of Viral Hepatitis. - Hoboken : Wiley-Blackwell. - 1352-0504 .- 1365-2893. ; 21:Suppl. 1, s. 34-59
  • Tidskriftsartikel (refereegranskat)abstract
    • The disease burden of hepatitis C virus (HCV) is expected to increase as the infected population ages. A modelling approach was used to estimate the total number of viremic infections, diagnosed, treated and new infections in 2013. In addition, the model was used to estimate the change in the total number of HCV infections, the disease progression and mortality in 2013-2030. Finally, expert panel consensus was used to capture current treatment practices in each country. Using today's treatment paradigm, the total number of HCV infections is projected to decline or remain flat in all countries studied. However, in the same time period, the number of individuals with late-stage liver disease is projected to increase. This study concluded that the current treatment rate and efficacy are not sufficient to manage the disease burden of HCV. Thus, alternative strategies are required to keep the number of HCV individuals with advanced liver disease and liver-related deaths from increasing.
  •  
3.
  • Wedemeyer, H., et al. (författare)
  • Strategies to manage hepatitis C virus (HCV) disease burden
  • 2014
  • Ingår i: Journal of Viral Hepatitis. - Hoboken : Wiley-Blackwell. - 1352-0504 .- 1365-2893. ; 21, s. 60-89
  • Tidskriftsartikel (refereegranskat)abstract
    • The number of hepatitis C virus (HCV) infections is projected to decline while those with advanced liver disease will increase. A modeling approach was used to forecast two treatment scenarios: (i) the impact of increased treatment efficacy while keeping the number of treated patients constant and (ii) increasing efficacy and treatment rate. This analysis suggests that successful diagnosis and treatment of a small proportion of patients can contribute significantly to the reduction of disease burden in the countries studied. The largest reduction in HCV-related morbidity and mortality occurs when increased treatment is combined with higher efficacy therapies, generally in combination with increased diagnosis. With a treatment rate of approximately 10%, this analysis suggests it is possible to achieve elimination of HCV (defined as a >90% decline in total infections by 2030). However, for most countries presented, this will require a 3-5 fold increase in diagnosis and/or treatment. Thus, building the public health and clinical provider capacity for improved diagnosis and treatment will be critical.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Pugh, Thomas A.M., et al. (författare)
  • Important role of forest disturbances in the global biomass turnover and carbon sinks
  • 2019
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 12:9, s. 730-735
  • Tidskriftsartikel (refereegranskat)abstract
    • Forest disturbances that lead to the replacement of whole tree stands are a cornerstone of forest dynamics, with drivers that include fire, windthrow, biotic outbreaks and harvest. The frequency of disturbances may change over the next century with impacts on the age, composition and biomass of forests. However, the disturbance return time, that is, the mean interval between disturbance events, remains poorly characterized across the world’s forested biomes, which hinders the quantification of the role of disturbances in the global carbon cycle. Here we present the global distribution of stand-replacing disturbance return times inferred from satellite-based observations of forest loss. Prescribing this distribution within a vegetation model with a detailed representation of stand structure, we quantify the importance of stand-replacing disturbances for biomass carbon turnover globally over 2001–2014. The return time varied from less than 50 years in heavily managed temperate ecosystems to over 1,000 years in tropical evergreen forests. Stand-replacing disturbances accounted for 12.3% (95% confidence interval, 11.4–13.7%) of the annual biomass carbon turnover due to tree mortality globally, and in 44% of the forested area, biomass stocks are strongly sensitive to changes in the disturbance return time. Relatively small shifts in disturbance regimes in these areas would substantially influence the forest carbon sink that currently limits climate change by offsetting emissions.
  •  
11.
  • Pugh, Thomas A.M., et al. (författare)
  • Understanding the uncertainty in global forest carbon turnover
  • 2020
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 17:15, s. 3961-3989
  • Tidskriftsartikel (refereegranskat)abstract
    • The length of time that carbon remains in forest biomass is one of the largest uncertainties in the global carbon cycle, with both recent historical baselines and future responses to environmental change poorly constrained by available observations. In the absence of large-scale observations, models used for global assessments tend to fall back on simplified assumptions of the turnover rates of biomass and soil carbon pools. In this study, the biomass carbon turnover times calculated by an ensemble of contemporary terrestrial biosphere models (TBMs) are analysed to assess their current capability to accurately estimate biomass carbon turnover times in forests and how these times are anticipated to change in the future. Modelled baseline 1985-2014 global average forest biomass turnover times vary from 12.2 to 23.5 years between TBMs. TBM differences in phenological processes, which control allocation to, and turnover rate of, leaves and fine roots, are as important as tree mortality with regard to explaining the variation in total turnover among TBMs. The different governing mechanisms exhibited by each TBM result in a wide range of plausible turnover time projections for the end of the century. Based on these simulations, it is not possible to draw robust conclusions regarding likely future changes in turnover time, and thus biomass change, for different regions. Both spatial and temporal uncertainty in turnover time are strongly linked to model assumptions concerning plant functional type distributions and their controls. Thirteen model-based hypotheses of controls on turnover time are identified, along with recommendations for pragmatic steps to test them using existing and novel observations. Efforts to resolve uncertainty in turnover time, and thus its impacts on the future evolution of biomass carbon stocks across the world's forests, will need to address both mortality and establishment components of forest demography, as well as allocation of carbon to woody versus non-woody biomass growth.
  •  
12.
  •  
13.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy