SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ketzel Matthias) "

Sökning: WFRF:(Ketzel Matthias)

  • Resultat 1-25 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Denby, Bruce, et al. (författare)
  • ESTIMATING DOMESTIC WOOD BURNING EMISSIONS OF PARTICULATE MATTER IN TWO NORDIC CITIES BY COMBINING AMBIENT AIR OBSERVATIONS WITH RECEPTOR AND DISPERSION MODELS
  • 2010
  • Ingår i: Chemical Industry and Chemical Engineering Quarterly. - 1451-9372. ; 16:3, s. 237-241
  • Tidskriftsartikel (refereegranskat)abstract
    • The major emission source of primary PM2 (5) in many Nordic countries is wood burning for domestic heating Though direct measurements of wood burning emissions are possible under controlled conditions, emission inventories for urban scale domestic heating are difficult to calculate and remain uncertain As an alternative method for estimating these emissions, this paper makes use of ambient air measurements chemical analysis of filter samples receptor models, dispersion models, and simple inverse modelling methods to infer the emission strengths A comparison of dispersion models with receptor models indicates that the dispersion models tend to overestimate the contribution from wood burning The inverse modelling results are found to agree with those from the receptor modelling Though both the receptor and inverse modelling point to an overestimation of the wood burning emissions of PM2 (5), it is not possible to assign this solely to errors in the emissions inventory as a dispersion model error can be significant It is recommended to improve plume rise and urban canopy meteorological descriptions in the dispersion models before these models are of sufficient quality to allow quantitative assessments of emission inventories
  •  
2.
  •  
3.
  • Arthur Hvidtfeldt, Ulla, et al. (författare)
  • Long-term exposure to fine particle elemental components and lung cancer incidence in the ELAPSE pooled cohort
  • 2021
  • Ingår i: Environmental Research. - : Elsevier BV. - 0013-9351 .- 1096-0953. ; 193
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: An association between long-term exposure to fine particulate matter (PM2.5) and lung cancer has been established in previous studies. PM2.5 is a complex mixture of chemical components from various sources and little is known about whether certain components contribute specifically to the associated lung cancer risk. The present study builds on recent findings from the Effects of Low-level Air Pollution: A Study in Europe (ELAPSE) collaboration and addresses the potential association between specific elemental components of PM2.5 and lung cancer incidence.Methods: We pooled seven cohorts from across Europe and assigned exposure estimates for eight components of PM2.5 representing non-tail pipe emissions (copper (Cu), iron (Fe), and zinc (Zn)), long-range transport (sulfur (S)), oil burning/industry emissions (nickel (Ni), vanadium (V)), crustal material (silicon (Si)), and biomass burning (potassium (K)) to cohort participants' baseline residential address based on 100 m by 100 m grids from newly developed hybrid models combining air pollution monitoring, land use data, satellite observations, and dispersion model estimates. We applied stratified Cox proportional hazards models, adjusting for potential confounders (age, sex, calendar year, marital status, smoking, body mass index, employment status, and neighborhood-level socio-economic status).Results: The pooled study population comprised 306,550 individuals with 3916 incident lung cancer events during 5,541,672 person-years of follow-up. We observed a positive association between exposure to all eight components and lung cancer incidence, with adjusted HRs of 1.10 (95% CI 1.05, 1.16) per 50 ng/m(3) PM2.5 K, 1.09 (95% CI 1.02, 1.15) per 1 ng/m3 PM2.5 Ni, 1.22 (95% CI 1.11, 1.35) per 200 ng/m(3) PM2.5 S, and 1.07 (95% CI 1.02, 1.12) per 200 ng/m(3) PM2.5 V. Effect estimates were largely unaffected by adjustment for nitrogen dioxide (NO2). After adjustment for PM2.5 mass, effect estimates of K, Ni, S, and V were slightly attenuated, whereas effect estimates of Cu, Si, Fe, and Zn became null or negative.Conclusions: Our results point towards an increased risk of lung cancer in connection with sources of combustion particles from oil and biomass burning and secondary inorganic aerosols rather than non-exhaust traffic emissions. Specific limit values or guidelines targeting these specific PM2.5 components may prove helpful in future lung cancer prevention strategies.
  •  
4.
  • Chen, Jie, et al. (författare)
  • Long-term exposure to ambient air pollution and bladder cancer incidence in a pooled European cohort : the ELAPSE project
  • 2022
  • Ingår i: British Journal of Cancer. - : Springer Science and Business Media LLC. - 0007-0920 .- 1532-1827. ; 126:10, s. 1499-1507
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The evidence linking ambient air pollution to bladder cancer is limited and mixed.Methods: We assessed the associations of bladder cancer incidence with residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight PM2.5 elemental components (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) in a pooled cohort (N = 302,493). Exposures were primarily assessed based on 2010 measurements and back-extrapolated to the baseline years. We applied Cox proportional hazard models adjusting for individual- and area-level potential confounders.Results: During an average of 18.2 years follow-up, 967 bladder cancer cases occurred. We observed a positive though statistically non-significant association between PM2.5 and bladder cancer incidence. Hazard Ratios (HR) were 1.09 (95% confidence interval (CI): 0.93–1.27) per 5 µg/m3 for 2010 exposure and 1.06 (95% CI: 0.99–1.14) for baseline exposure. Effect estimates for NO2, BC and O3 were close to unity. A positive association was observed with PM2.5 zinc (HR 1.08; 95% CI: 1.00–1.16 per 10 ng/m3).Conclusions: We found suggestive evidence of an association between long-term PM2.5 mass exposure and bladder cancer, strengthening the evidence from the few previous studies. The association with zinc in PM2.5 suggests the importance of industrial emissions.
  •  
5.
  • Chen, Jie, et al. (författare)
  • Long-Term Exposure to Source-Specific Fine Particles and Mortality-A Pooled Analysis of 14 European Cohorts within the ELAPSE Project
  • 2022
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 56:13, s. 9277-9290
  • Tidskriftsartikel (refereegranskat)abstract
    • We assessed mortality risks associated with sourcespecific fine particles (PM2.5) in a pooled European cohort of 323,782 participants. Cox proportional hazard models were applied to estimate mortality hazard ratios (HRs) for source-specific PM2.5 identified through a source apportionment analysis. Exposure to 2010 annual average concentrations of source-specific PM2.5 components was assessed at baseline residential addresses. The source apportionment resulted in the identification of five sources: traffic, residual oil combustion, soil, biomass and agriculture, and industry. In single-source analysis, all identified sources were significantly positively associated with increased natural mortality risks. In multisource analysis, associations with all sources attenuated but remained statistically significant with traffic, oil, and biomass and agriculture. The highest association per interquartile increase was observed for the traffic component (HR: 1.06; 95% CI: 1.04 and 1.08 per 2.86 mu g/m(3) increase) across five identified sources. On a 1 mu g/m(3) basis, the residual oil-related PM2.5 had the strongest association (HR: 1.13; 95% CI: 1.05 and 1.22), which was substantially higher than that for generic PM2.5 mass, suggesting that past estimates using the generic PM2.5 exposure response function have underestimated the potential clean air health benefits of reducing fossil-fuel combustion. Source-specific associations with cause-specific mortality were in general consistent with findings of natural mortality.
  •  
6.
  • Cole-Hunter, Thomas, et al. (författare)
  • Long-term air pollution exposure and Parkinson's disease mortality in a large pooled European cohort : An ELAPSE study
  • 2023
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 171
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The link between exposure to ambient air pollution and mortality from cardiorespiratory diseases is well established, while evidence on neurodegenerative disorders including Parkinson’s Disease (PD) remains limited.Objective: We examined the association between long-term exposure to ambient air pollution and PD mortality in seven European cohorts.Methods: Within the project ‘Effects of Low-Level Air Pollution: A Study in Europe’ (ELAPSE), we pooled data from seven cohorts among six European countries. Annual mean residential concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC), and ozone (O3), as well as 8 PM2.5 components (copper, iron, potassium, nickel, sulphur, silicon, vanadium, zinc), for 2010 were estimated using Europe-wide hybrid land use regression models. PD mortality was defined as underlying cause of death being either PD, secondary Parkinsonism, or dementia in PD. We applied Cox proportional hazard models to investigate the associations between air pollution and PD mortality, adjusting for potential confounders.Results: Of 271,720 cohort participants, 381 died from PD during 19.7 years of follow-up. In single-pollutant analyses, we observed positive associations between PD mortality and PM2.5 (hazard ratio per 5 µg/m3: 1.25; 95% confidence interval: 1.01–1.55), NO2 (1.13; 0.95–1.34 per 10 µg/m3), and BC (1.12; 0.94–1.34 per 0.5 × 10-5m-1), and a negative association with O3 (0.74; 0.58–0.94 per 10 µg/m3). Associations of PM2.5, NO2, and BC with PD mortality were linear without apparent lower thresholds. In two-pollutant models, associations with PM2.5 remained robust when adjusted for NO2 (1.24; 0.95–1.62) or BC (1.28; 0.96–1.71), whereas associations with NO2 or BC attenuated to null. O3 associations remained negative, but no longer statistically significant in models with PM2.5. We detected suggestive positive associations with the potassium component of PM2.5.Conclusion: Long-term exposure to PM2.5, at levels well below current EU air pollution limit values, may contribute to PD mortality.
  •  
7.
  • Denby, Bruce Rolstad, et al. (författare)
  • A coupled road dust and surface moisture model to predict non-exhaust road traffic induced particle emissions (NORTRIP). Part 1 : Road dust loading and suspension modelling
  • 2013
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 77, s. 283-300
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-exhaust traffic induced emissions are a major source of particle mass in most European countries. This is particularly important in Nordic and Alpine countries where winter time road traction maintenance occurs, e.g. salting and sanding, and where studded tyres are used. In this paper, Part 1, the road dust sub-model of a coupled road dust and surface moisture model (NORTRIP) is described. The model provides a generalised process based formulation of the non-exhaust emissions, with emphasis on the contribution of road wear, suspension, surface dust loading and the effect of road surface moisture (retention of wear particles and suspended emissions). The model is intended for use as a tool for air quality managers to help study the impact of mitigation measures and policies. We present a description of the road dust sub-model and apply the model to two sites in Stockholm and Copenhagen where seven years of data with surface moisture measurements are available. For the site in Stockholm, where studded tyres are in use, the model predicts the PM10 concentrations very well with correlations (R-2) in the range of R-2 = 0.76-0.91 for daily mean PM10. The model also reproduces well the impact of a reduction in studded tyres at this site. For the site in Copenhagen the correlation is lower, in the range 0.44-0.51. The addition of salt is described in the model and at both sites this leads to improved correlations due to additional salt emissions. For future use of the model a number of model parameters, e.g. wear factors and suspension rates, still need to be refined. The effect of sanding on PM10 emissions is also presented but more information will be required before this can be confidently applied for management applications. (C) 2013 Elsevier Ltd. All rights reserved.
  •  
8.
  • Denby, Bruce Rolstad, et al. (författare)
  • A coupled road dust and surface moisture model to predict non-exhaust road traffic induced particle emissions (NORTRIP). Part 2 : Surface moisture and salt impact modelling
  • 2013
  • Ingår i: Atmospheric Environment. - : Elsevier. - 1352-2310 .- 1873-2844. ; 81, s. 485-503
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-exhaust traffic induced emissions are a major source of airborne particulate matter in most European countries. This is particularly important in Nordic and Alpine countries where winter time road traction maintenance occurs, e.g. salting and sanding, and where studded tyres are used. Though the total mass generated by wear sources is a key factor in non-exhaust emissions, these emissions are also strongly controlled by surface moisture conditions. In this paper, Part 2, the road surface moisture submodel of a coupled road dust and surface moisture model (NORTRIP) is described.We present a description of the road surface moisture part of the model and apply the coupled model to seven sites in Stockholm, Oslo, Helsinki and Copenhagen over 18 separate periods, ranging from 3.5 to 24 months. At two sites surface moisture measurements are available and the moisture sub-model is compared directly to these observations. The model predicts the frequency of wet roads well at both sites, with an average fractional bias of -2.6%. The model is found to correctly predict the hourly surface state, wet or dry, 85% of the time. From the 18 periods modelled using the coupled model an average absolute fractional bias of 15% for PM10 concentrations was found. Similarly the model predicts the 90'th daily mean percentiles of PMio with an average absolute bias of 19% and an average correlation (R-2) of 0.49. When surface moisture is not included in the modelling then this average correlation is reduced to 0.16, demonstrating the importance of the surface moisture conditions. Tests have been carried out to assess the sensitivity of the model to model parameters and input data. The model provides a useful tool for air quality management and for improving our understanding of non-exhaust traffic emissions.
  •  
9.
  • Hvidtfeldt, Ulla Arthur, et al. (författare)
  • Long term exposure to air pollution and kidney parenchyma cancer – Effects of low-level air pollution : a Study in Europe (ELAPSE)
  • 2022
  • Ingår i: Environmental Research. - : Academic Press Inc.. - 0013-9351 .- 1096-0953. ; 215
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Particulate matter (PM) is classified as a group 1 human carcinogen. Previous experimental studies suggest that particles in diesel exhaust induce oxidative stress, inflammation and DNA damage in kidney cells, but the evidence from population studies linking air pollution to kidney cancer is limited.METHODS: We pooled six European cohorts (N = 302,493) to assess the association of residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight elemental components of PM2.5 (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) with cancer of the kidney parenchyma. The main exposure model was developed for year 2010. We defined kidney parenchyma cancer according to the International Classification of Diseases 9th and 10th Revision codes 189.0 and C64. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level.RESULTS: The participants were followed from baseline (1985–2005) to 2011–2015. A total of 847 cases occurred during 5,497,514 person-years of follow-up (average 18.2 years). Median (5–95%) exposure levels of NO2, PM2.5, BC and O3 were 24.1 μg/m3 (12.8–39.2), 15.3 μg/m3 (8.6–19.2), 1.6 10−5 m−1 (0.7–2.1), and 87.0 μg/m3 (70.3–97.4), respectively. The results of the fully adjusted linear analyses showed a hazard ratio (HR) of 1.03 (95% confidence interval [CI]: 0.92, 1.15) per 10 μg/m³ NO2, 1.04 (95% CI: 0.88, 1.21) per 5 μg/m³ PM2.5, 0.99 (95% CI: 0.89, 1.11) per 0.5 10−5 m−1 BCE, and 0.88 (95% CI: 0.76, 1.02) per 10 μg/m³ O3. We did not find associations between any of the elemental components of PM2.5 and cancer of the kidney parenchyma.CONCLUSION: We did not observe an association between long-term ambient air pollution exposure and incidence of kidney parenchyma cancer.
  •  
10.
  • Hvidtfeldt, Ulla Arthur, et al. (författare)
  • Long-term low-level ambient air pollution exposure and risk of lung cancer - A pooled analysis of 7 European cohorts
  • 2021
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 146
  • Tidskriftsartikel (refereegranskat)abstract
    • Background/aim: Ambient air pollution has been associated with lung cancer, but the shape of the exposure-response function - especially at low exposure levels - is not well described. The aim of this study was to address the relationship between long-term low-level air pollution exposure and lung cancer incidence.Methods: The Effects of Low-level Air Pollution: a Study in Europe (ELAPSE) collaboration pools seven cohorts from across Europe. We developed hybrid models combining air pollution monitoring, land use data, satellite observations, and dispersion model estimates for nitrogen dioxide (NO2), fine particulate matter (PM2.5), black carbon (BC), and ozone (O-3) to assign exposure to cohort participants' residential addresses in 100 m by 100 m grids. We applied stratified Cox proportional hazards models, adjusting for potential confounders (age, sex, calendar year, marital status, smoking, body mass index, employment status, and neighborhood-level socioeconomic status). We fitted linear models, linear models in subsets, Shape-Constrained Health Impact Functions (SCHIF), and natural cubic spline models to assess the shape of the association between air pollution and lung cancer at concentrations below existing standards and guidelines.Results: The analyses included 307,550 cohort participants. During a mean follow-up of 18.1 years, 3956 incident lung cancer cases occurred. Median (Q1, Q3) annual (2010) exposure levels of NO2, PM2.5, BC and O-3 (warm season) were 24.2 mu g/m(3) (19.5, 29.7), 15.4 mu g/m(3) (12.8, 17.3), 1.6 10(-5)m(-1) (1.3, 1.8), and 86.6 mu g/m(3) (78.5, 92.9), respectively. We observed a higher risk for lung cancer with higher exposure to PM2.5 (HR: 1.13, 95% CI: 1.05, 1.23 per 5 mu g/m(3)). This association was robust to adjustment for other pollutants. The SCHIF, spline and subset analyses suggested a linear or supra-linear association with no evidence of a threshold. In subset analyses, risk estimates were clearly elevated for the subset of subjects with exposure below the EU limit value of 25 mu g/m(3). We did not observe associations between NO2, BC or O-3 and lung cancer incidence.Conclusions: Long-term ambient PM2.5 exposure is associated with lung cancer incidence even at concentrations below current EU limit values and possibly WHO Air Quality Guidelines.
  •  
11.
  • Hvidtfeldt, Ulla Arthur, et al. (författare)
  • Multiple myeloma risk in relation to long-term air pollution exposure - A pooled analysis of four European cohorts
  • 2023
  • Ingår i: Environmental Research. - 0013-9351 .- 1096-0953. ; 239:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Air pollution is a growing concern worldwide, with significant impacts on human health. Multiple myeloma is a type of blood cancer with increasing incidence. Studies have linked air pollution exposure to various types of cancer, including leukemia and lymphoma, however, the relationship with multiple myeloma incidence has not been extensively investigated. Methods: We pooled four European cohorts (N = 234,803) and assessed the association between residential exposure to nitrogen dioxide (NO2), fine particles (PM2.5), black carbon (BC), and ozone (O3) and multiple myeloma. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. Results: During 4,415,817 person-years of follow-up (average 18.8 years), we observed 404 cases of multiple myeloma. The results of the fully adjusted linear analyses showed hazard ratios (95% confidence interval) of 0.99 (0.84, 1.16) per 10 mu g/m3 NO2, 1.04 (0.82, 1.33) per 5 mu g/m3 PM2.5, 0.99 (0.84, 1.18) per 0.5 10- 5 m-1 BCE, and 1.11 (0.87, 1.41) per 10 mu g/m3 O3. Conclusions: We did not observe an association between long-term ambient air pollution exposure and incidence of multiple myeloma.
  •  
12.
  • Ketzel, Matthias (författare)
  • Dispersion and Transformation of Traffic Exhaust Particles in the Urban Atmosphere
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Ultrafine particles, their sources and fate in the atmosphere are currently key issues in atmospheric research owing to concern about their effects on human health and global climate. Traffic emissions are a dominating source of ultrafine particles, especially in urban areas. After release into the atmosphere, the particles are subjected to complex dilution and transformation processes that are often treated in aerosol dynamics and dispersion models to better understand observations and to make predictions or scenario calculations for future situations. This thesis contributes to the validation and the refinement of existing urban dispersion models and their extension towards a prediction of particle size distributions. By analysing measurements of particle and gaseous pollutants and by application of various dispersion and aerosol dynamics models, the work aims at identifying and exploring the relevant processes that should be included in practical air pollution models for particles. The relevance of the turbulence produced by the vehicle movements for the dispersion inside a street canyon has been shown in field data and a method to incorporate this effect into results from numerical models and wind tunnel measurements has been developed. Dispersion models of different complexity are applied to real-world situations and compared with field measurements and wind tunnel experiments. Measurements of ultrafine particle size distribution at kerbside, urban, near-city and rural locations in the Copenhagen area are analysed. They document the temporal and spatial variation of the particle number and mass concentration and can clearly separate the different contributions from the local street traffic, the urban and regional sources. Particle number emission factors per average vehicle and kilometer driven were estimated for typical urban conditions in Denmark. This thesis further investigates the time scales of various dynamic processes during the evolution of the particle size distribution from its emission from a vehicle exhaust pipe through its dilution at kerbside and urban level. We identify the spatial or temporal scales under which the discussed processes are important. The Multi-plume Aerosol dynamics and Transport (MAT) model has been developed to study the dynamics of the particle size distribution in an urban environment. The model used a new vertical dispersion scheme that is coupled to an existing aerosol dynamics model. The model was tested and applied to measurements in the Copenhagen area.
  •  
13.
  •  
14.
  • Ketzel, Matthias, et al. (författare)
  • Multi-plume aerosol dynamics and transport model for urban scale particle pollution
  • 2005
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310. ; 39:19, s. 3407-3420
  • Tidskriftsartikel (refereegranskat)abstract
    • The Multi-plume Aerosol dynamics and Transport (MAT) model has been developed to study the dynamics of the particle size distribution in urban environments. The MAT model uses a novel multi-plume scheme for vertical dispersion and routines of the aerodynamics models AERO3. It treats the processes: emission from a near ground source, dilution with background air, deposition, coagulation and condensation. The employed plume approach is computationally efficient compared to grid models and is therefore suitable for calculating longer time series. The treatment of the different processes in the model was validated against analytical solutions and literature data and later the full model was applied to a field data set from the Copenhagen area. The range of changes in particle concentration including all processes compared to an inert treatment of particles lies between 13% and 23% of loss in total number concentration and 2% loss and 8% gain for the total volume concentration. This agrees well with measurements in Copenhagen that indicated total number concentration (ToN) losses in the range of 15-30% between kerbside and urban rooftop level. The model also reproduces the shift of the maximum in the size distribution to slightly larger diameters between street and urban rooftop level. Because of the uncertainties in the parameters describing the different processes and their similar influence on the particle size distribution, it is possible to obtain similar results with different parameter combinations. More research and model validation is needed to narrow the range of possible input parameters and model assumptions for this type of modelling.
  •  
15.
  •  
16.
  • Krecl, Patricia, et al. (författare)
  • Long-term trends in nitrogen oxides concentrations and on-road vehicle emission factors in Copenhagen, London and Stockholm
  • 2021
  • Ingår i: Environmental Pollution. - : Elsevier BV. - 0269-7491 .- 1873-6424. ; 290
  • Tidskriftsartikel (refereegranskat)abstract
    • Road transport is the main anthropogenic source of NOx in Europe, affecting human health and ecosystems. Thus, mitigation policies have been implemented to reduce on-road vehicle emissions, particularly through the Euro standard limits. To evaluate the effectiveness of these policies, we calculated NO2 and NOx concentration trends using air quality and meteorological measurements conducted in three European cities over 26 years. These data were also employed to estimate the trends in NOx emission factors (EFNOx, based on inverse dispersion modeling) and NO2:NOx emission ratios for the vehicle fleets under real-world driving conditions. In the period 1998–2017, Copenhagen and Stockholm showed large reductions in both the urban background NOx concentrations (−2.1 and −2.6% yr−1, respectively) and EFNOx at curbside sites (68 and 43%, respectively), proving the success of the Euro standards in diminishing NOx emissions. London presented a modest decrease in urban background NOx concentrations (−1.3% yr−1), while EFNOx remained rather constant at the curbside site (Marylebone Road) due to the increase in public bus traffic. NO2 primary emissions —that are not regulated— increased until 2008–2010, which also reflected in the ambient concentrations. This increase was associated with a strong dieselization process and the introduction of new after-treatment technologies that targeted the emission reduction of other species (e.g., greenhouse gases or particulate matter). Thus, while regulations on ambient concentrations of specific species have positive effects on human health, the overall outcomes should be considered before widely adopting them. Emission inventories for the on-road transportation sector should include EFNOx derived from real-world measurements, particularly in urban settings.
  •  
17.
  • Liu, Shuo, et al. (författare)
  • Long-term exposure to low-level air pollution and incidence of asthma : the ELAPSE project
  • 2021
  • Ingår i: European Respiratory Journal. - : European Respiratory Society (ERS). - 0903-1936 .- 1399-3003. ; 57:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Long-term exposure to ambient air pollution has been linked to childhood-onset asthma, although evidence is still insufficient. Within the multicentre project Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), we examined the associations of long-term exposures to particulate matter with a diameter <2.5 mu m (PM2.5), nitrogen dioxide (NO2) and black carbon (BC) with asthma incidence in adults.Methods: We pooled data from three cohorts in Denmark and Sweden with information on asthma hospital diagnoses. The average concentrations of air pollutants in 2010 were modelled by hybrid land-use regression models at participants' baseline residential addresses. Associations of air pollution exposures with asthma incidence were explored with Cox proportional hazard models, adjusting for potential confounders.Results: Of 98326 participants, 1965 developed asthma during a mean follow-up of 16.6 years. We observed associations in fully adjusted models with hazard ratios of 1.22 (95% CI 1.04-1.43) per 5 mu g.m(-3) for PM2.5, 1.17 (95% CI 1.10-1.25) per 10 mu g.m(-3) for NO2 and 1.15 (95% CI 1.08-1.23) per 0.5 x 10(-5) m(-1) for BC. Hazard ratios were larger in cohort subsets with exposure levels below the European Union and US limit values and possibly World Health Organization guidelines for PM2.5 and NO2. NO 2 and BC estimates remained unchanged in two-pollutant models with PM2.5, whereas PM2.5 estimates were attenuated to unity. The concentration-response curves showed no evidence of a threshold.Conclusions: Long-term exposure to air pollution, especially from fossil fuel combustion sources such as motorised traffic, was associated with adult-onset asthma, even at levels below the current limit values.
  •  
18.
  • Liu, Shuo, et al. (författare)
  • Long-term exposure to low-level air pollution and incidence of chronic obstructive pulmonary disease : The ELAPSE project
  • 2021
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 146
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Air pollution has been suggested as a risk factor for chronic obstructive pulmonary disease (COPD), but evidence is sparse and inconsistent.Objectives: We examined the association between long-term exposure to low-level air pollution and COPD incidence.Methods: Within the 'Effects of Low-Level Air Pollution: A Study in Europe' (ELAPSE) study, we pooled data from three cohorts, from Denmark and Sweden, with information on COPD hospital discharge diagnoses. Hybrid land use regression models were used to estimate annual mean concentrations of particulate matter with a diameter < 2.5 mu m (PM2.5), nitrogen dioxide (NO2), and black carbon (BC) in 2010 at participants' baseline residential addresses, which were analysed in relation to COPD incidence using Cox proportional hazards models.Results: Of 98,058 participants, 4,928 developed COPD during 16.6 years mean follow-up. The adjusted hazard ratios (HRs) and 95% confidence intervals for associations with COPD incidence were 1.17 (1.06, 1.29) per 5 mu g/m(3) for PM2.5, 1.11 (1.06, 1.16) per 10 mu g/m(3) for NO2, and 1.11 (1.06, 1.15) per 0.5 10(-5) m(-1) for BC. Associations persisted in subset participants with PM2.5 or NO2 levels below current EU and US limit values and WHO guidelines, with no evidence for a threshold. HRs for NO2 and BC remained unchanged in two-pollutant models with PM2.5, whereas the HR for PM2.5 was attenuated to unity with NO2 or BC.Conclusions: Long-term exposure to low-level air pollution is associated with the development of COPD, even below current EU and US limit values and possibly WHO guidelines. Traffic-related pollutants NO2 and BC may be the most relevant.
  •  
19.
  • Löndahl, Jakob, et al. (författare)
  • A set-up for field studies of respiratory tract deposition of fine and ultrafine particles in humans
  • 2006
  • Ingår i: Journal of Aerosol Science. - : Elsevier BV. - 0021-8502. ; 37:9, s. 1152-1163
  • Tidskriftsartikel (refereegranskat)abstract
    • Respiratory tract deposition data of ultrafine aerosol particles, hygroscopic particles and ambient particles in general are scarce. Measurements are associated with several difficulties. The objective of this work was to design a method for fast determination of highly size-resolved fine and ultrafine particle deposition, to be used on larger groups of human subjects in exposure studies and in typical ambient and indoor environments. The particle size distributions in dried samples of the inhaled and exhaled air are characterised with an electrical mobility spectrometer. A particle counter desmearing procedure reduces the spectrometer scan time. The precision and sensitivity of the method was tested for hygroscopic sodium chloride (NaCl) and hydrophobic Di-Ethyl-Hexyl-Sebacate (DEHS) aerosols in repeated identical experiments and experiments with different breathing frequencies on a single subject. The accuracy of the method was estimated by comparing results from three subjects with previous data obtained with monodisperse particles and with the well-established International Commission on Radiological Protection model (1994). Potential errors due to size shifts between the inhaled and exhaled samples and coagulation were simulated. The system has low losses in the studied particle size range (10-475 nm), typically 10% or less of the fraction deposited in the respiratory tract. Coagulation is noticeable at 10(5) cm(-3) but can be corrected for up to 5 x 10(5) cm(-3). The precision in the determined deposited fraction is 0.02-0.08. The method is sensitive enough to quantify differences between breathing patterns and differences between hygroscopic and hydrophobic aerosols. Our results for NaCl and DEHS are in agreement with the ICRP 66 model [International Commission on Radiological Protection. (1994). Human respiratory tract model for radiological protection (ICRP Publication 66). Oxford, UK: Elsevier Science], and also suggest that the relative humidity in the respiratory tract is close to 99.5%. A respiratory tract deposition measurement can be done in 15-30 min. Recommendations are given for field applications of the method. (C) 2005 Elsevier Ltd. All rights reserved.
  •  
20.
  •  
21.
  • Löndahl, Jakob, et al. (författare)
  • Experimentally Determined Human Respiratory Tract Deposition of Airborne Particles at a Busy Street
  • 2009
  • Ingår i: Environmental Science & Technology. - : American Chemical Society (ACS). - 1520-5851 .- 0013-936X. ; 43:13, s. 4659-4664
  • Tidskriftsartikel (refereegranskat)abstract
    • Traffic is one of the major sources of harmful airborne particles worldwide. To relate exposure to adverse health effects it is important to determine the deposition probability of the inhaled particles in the human respiratory tract. The size-dependent deposition of 12-580 nm particles was measured with a novel setup in 9 healthy subjects breathing by mouth on the windward side of a busy street in Copenhagen, Denmark. The aerosol was characterized both at the curbside and, to obtain the background concentration, at rooftop level. Particle hygroscopicity, a key parameter affecting respiratory tract deposition, was also measured at the same time of exposure. The total deposition fraction of the curbside particles in the range 12-580 nm was 0.60 by number, 0.29 by surface area, and 0.23 by mass. The deposition fractions of the "traffic exhaust" contribution, calculated as the hydrophobic fraction of the curbside particles, was 0.68, 0.35, and 0.28 by number, surface area, and mass, respectively. The deposited amount of traffic exhaust particles was 16 times higher by number and 3 times higher by surface area compared to the deposition of residential biofuel combustion particles investigated previously (equal inhaled mass concentrations). This was because the traffic exhaust particles had both a higher deposition probability and a higher number and surface area concentration per unit mass. To validate the results, the respiratory tract deposition was estimated by using the well-established ICRP. model. Predictions were in agreement with experimental results when the effects of particle hygroscopicity were considered in the model.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  • Roswall, Nina, et al. (författare)
  • Long-Term Exposure to Transportation Noise and Risk of Incident Stroke : A Pooled Study of Nine Scandinavian Cohorts
  • 2021
  • Ingår i: Journal of Environmental Health Perspectives. - : National Institute of Environmental Health Sciences (NIEHS). - 0091-6765 .- 1552-9924. ; 129:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Transportation noise is increasingly acknowledged as a cardiovascular risk factor, but the evidence base for an association with stroke is sparse.Objective: We aimed to investigate the association between transportation noise and stroke incidence in a large Scandinavian population.Methods: We harmonized and pooled data from nine Scandinavian cohorts (seven Swedish, two Danish), totaling 135,951 participants. We identified residential address history and estimated road, railway, and aircraft noise for all addresses. Information on stroke incidence was acquired through linkage to national patient and mortality registries. We analyzed data using Cox proportional hazards models, including socioeconomic and lifestyle confounders, and air pollution.Results: During follow-up (median=19.5y), 11,056 stroke cases were identified. Road traffic noise (Lden) was associated with risk of stroke, with a hazard ratio (HR) of 1.06 [95% confidence interval (CI): 1.03, 1.08] per 10-dB higher 5-y mean time-weighted exposure in analyses adjusted for individual- and area-level socioeconomic covariates. The association was approximately linear and persisted after adjustment for air pollution [particulate matter (PM) with an aerodynamic diameter of ≤2.5μm (PM2.5) and NO2]. Stroke was associated with moderate levels of 5-y aircraft noise exposure (40–50 vs. ≤40 dB) (HR=1.12; 95% CI: 0.99, 1.27), but not with higher exposure (≥50 dB, HR=0.94HR; 95% CI: 0.79, 1.11). Railway noise was not associated with stroke.Discussion: In this pooled study, road traffic noise was associated with a higher risk of stroke. This finding supports road traffic noise as an important cardiovascular risk factor that should be included when estimating the burden of disease due to traffic noise.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 30
Typ av publikation
tidskriftsartikel (21)
konferensbidrag (6)
rapport (1)
doktorsavhandling (1)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (26)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Ketzel, Matthias (30)
Rizzuto, Debora (13)
Leander, Karin (13)
de Hoogh, Kees (11)
Hoek, Gerard (11)
Nagel, Gabriele (11)
visa fler...
Magnusson, Patrik K ... (11)
Chen, Jie (11)
Bellander, Tom (11)
Katsouyanni, Klea (11)
Weinmayr, Gudrun (11)
Stafoggia, Massimo (11)
Raaschou-Nielsen, Ol ... (11)
Forastiere, Francesc ... (11)
Hoffmann, Barbara (11)
Samoli, Evangelia (11)
Wolf, Kathrin (11)
Brunekreef, Bert (10)
Fecht, Daniela (10)
Gulliver, John (10)
Hertel, Ole (10)
Pershagen, Göran (9)
Massling, Andreas (9)
Swietlicki, Erik (9)
Peters, Annette (9)
Andersen, Zorana J. (9)
Brandt, Jørgen (9)
Liu, Shuo (9)
Strak, Maciej (9)
Löndahl, Jakob (8)
Rodopoulou, Sophia (8)
Sigsgaard, Torben (6)
Severi, Gianluca (6)
Pagels, Joakim (6)
Cesaroni, Giulia (6)
Klompmaker, Jochem O ... (6)
Vienneau, Danielle (6)
Tjønneland, Anne (5)
Boutron-Ruault, Mari ... (5)
Jørgensen, Jeanette ... (5)
Oftedal, Bente (5)
Bauwelinck, Mariska (5)
Jöckel, Karl-Heinz (5)
Sørensen, Mette (4)
Johansson, Christer (4)
Lager, Anton (4)
Kristensson, Adam (4)
Concin, Hans (4)
Renzi, Matteo (4)
Lim, Youn-Hee (4)
visa färre...
Lärosäte
Stockholms universitet (17)
Lunds universitet (15)
Karolinska Institutet (13)
Umeå universitet (2)
VTI - Statens väg- och transportforskningsinstitut (2)
Göteborgs universitet (1)
visa fler...
Örebro universitet (1)
visa färre...
Språk
Engelska (30)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (18)
Medicin och hälsovetenskap (12)
Teknik (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy