SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kim Hyosung) "

Sökning: WFRF:(Kim Hyosung)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ching, Tao-Chung, et al. (författare)
  • The JCMT BISTRO-2 Survey: Magnetic Fields of the Massive DR21 Filament
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 941:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present 850 mu m dust polarization observations of the massive DR21 filament from the B-fields In STar-forming Region Observations (BISTRO) survey, using the POL-2 polarimeter and the SCUBA-2 camera on the James Clerk Maxwell Telescope. We detect ordered magnetic fields perpendicular to the parsec-scale ridge of the DR21 main filament. In the subfilaments, the magnetic fields are mainly parallel to the filamentary structures and smoothly connect to the magnetic fields of the main filament. We compare the POL-2 and Planck dust polarization observations to study the magnetic field structures of the DR21 filament on 0.1-10 pc scales. The magnetic fields revealed in the Planck data are well-aligned with those of the POL-2 data, indicating a smooth variation of magnetic fields from large to small scales. The plane-of-sky magnetic field strengths derived from angular dispersion functions of dust polarization are 0.6-1.0 mG in the DR21 filament and similar to 0.1 mG in the surrounding ambient gas. The mass-to-flux ratios are found to be magnetically supercritical in the filament and slightly subcritical to nearly critical in the ambient gas. The alignment between column density structures and magnetic fields changes from random alignment in the low-density ambient gas probed by Planck to mostly perpendicular in the high-density main filament probed by James Clerk Maxwell Telescope. The magnetic field structures of the DR21 filament are in agreement with MHD simulations of a strongly magnetized medium, suggesting that magnetic fields play an important role in shaping the DR21 main filament and subfilaments.
  •  
2.
  • Karoly, Janik, et al. (författare)
  • The JCMT BISTRO Survey: Studying the Complex Magnetic Field of L43
  • 2023
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 952:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations of polarized dust emission at 850 mu m from the L43 molecular cloud, which sits in the Ophiuchus cloud complex. The data were taken using SCUBA-2/POL-2 on the James Clerk Maxwell Telescope as a part of the BISTRO large program. L43 is a dense (N-H2 similar to 10(22) - 10(23) cm(-2)) complex molecular cloud with a submillimeter-bright starless core and two protostellar sources. There appears to be an evolutionary gradient along the isolated filament that L43 is embedded within, with the most evolved source closest to the Sco OB2 association. One of the protostars drives a CO outflow that has created a cavity to the southeast. We see a magnetic field that appears to be aligned with the cavity walls of the outflow, suggesting interaction with the outflow. We also find a magnetic field strength of up to similar to 160 +/- 30 mu G in the main starless core and up to similar to 90 +/- 40 mu G in the more diffuse, extended region. These field strengths give magnetically super- and subcritical values, respectively, and both are found to be roughly trans-Alfvenic. We also present a new method of data reduction for these denser but fainter objects like starless cores.
  •  
3.
  • Hwang, Jihye, et al. (författare)
  • The JCMT BISTRO Survey: A Spiral Magnetic Field in a Hub-filament Structure, Monoceros R2
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 941:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present and analyze observations of polarized dust emission at 850 μm toward the central 1 × 1 pc hub-filament structure of Monoceros R2 (Mon R2). The data are obtained with SCUBA-2/POL-2 on the James Clerk Maxwell Telescope (JCMT) as part of the B-fields in Star-forming Region Observations survey. The orientations of the magnetic field follow the spiral structure of Mon R2, which are well described by an axisymmetric magnetic field model. We estimate the turbulent component of the magnetic field using the angle difference between our observations and the best-fit model of the underlying large-scale mean magnetic field. This estimate is used to calculate the magnetic field strength using the Davis–Chandrasekhar–Fermi method, for which we also obtain the distribution of volume density and velocity dispersion using a column density map derived from Herschel data and the C18O (J = 3 - 2) data taken with HARP on the JCMT, respectively. We make maps of magnetic field strengths and mass-to-flux ratios, finding that magnetic field strengths vary from 0.02 to 3.64 mG with a mean value of 1.0 ± 0.06 mG, and the mean critical mass-to-flux ratio is 0.47 ± 0.02. Additionally, the mean Alfvén Mach number is 0.35 ± 0.01. This suggests that, in Mon R2, the magnetic fields provide resistance against large-scale gravitational collapse, and the magnetic pressure exceeds the turbulent pressure. We also investigate the properties of each filament in Mon R2. Most of the filaments are aligned along the magnetic field direction and are magnetically subcritical.
  •  
4.
  • Fan, Xiangyang, et al. (författare)
  • Phosphine oxide modulator-ameliorated hole injection for blue perovskite light-emitting diodes
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 11:38, s. 20808-20815
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the enormous developments in perovskite light-emitting diodes (PeLEDs) recently, obtaining efficient blue PeLEDs is still considered a critical challenge due to the non-radiative recombination and unbalanced charge injection caused by the unmatched carrier mobility and the deep hole-injection barrier between the hole-transport layer (HTL) and the emissive layer (EML). Herein, we incorporate tris(4-trifluoromethylphenyl)phosphine oxide (TMFPPO), obtained through a facile oxidation synthesis process, into poly(9-vinylcarbazole) (PVK). TMFPPO incorporation modulated the energy level and hole mobility of the binary-blend HTLs to eliminate the hole-injection barrier and balance the charge injection within the EML. Consequently, the blue PeLEDs with blended HTL presented an external quantum efficiency (EQE) of 7.23% centred at 477 nm, which was much higher than the EQE of a PVK device (4.95%). Our results demonstrate that modulating the energy level and charge injection of the HTL in the device is a promising method for obtaining efficient blue PeLEDs. TMFPPO is developed and incorporated into PVK to modulate the hole mobility and energy level of the hole-transport layer, giving rise to a barrier-free blue perovskite light-emitting diode and an enhancement of the EQE from 4.95 to 7.23% at 477 nm.
  •  
5.
  • Saeed, Muhammad Ahsan, et al. (författare)
  • 2D MXene Additive-Induced Treatment Enabling High-Efficiency Indoor Organic Photovoltaics
  • 2023
  • Ingår i: Advanced Optical Materials. - : Wiley-VCH Verlagsgesellschaft. - 2162-7568 .- 2195-1071. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The surge of Internet-of-everything applications over the past decade demands the adoption of novel material design and device engineering strategies for the development of state-of-the-art organic photovoltaics (OPVs) in low-light indoor environments. Owing to their excellent optoelectronic properties, two-dimensional MXenes possess outstanding potential in this regard. Herein, an unprecedented indoor power conversion efficiency (PCE) of 33.8% under light-emitting-diode (LED) illumination (1000-lx) is secured by additive-induced treatment of MXene in polymer-donor:non-fullerene-acceptor-based organic photoactive layer. The remarkable indoor performance of MXene OPVs mainly originates from the enhanced absorption, compact molecular packing, and smooth surface morphology with a reduced number of grain boundaries in the photoactive layer, resulting in an improved fill factor and balanced charge transport and extraction characteristics with suppressed recombination, thereby producing an impressive indoor PCE. In addition, the presence of MXene in the photoactive layer facilitates polaron-pair dissociation owing to improved free-charge generation, leading to enhanced photoconductivity. This performance represents the highest PCE among the OPVs measured under indoor illumination. This work highlights the promising prospect of 2D MXene and its composites for indoor light energy harvesting applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy