SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kitchell James F.) "

Sökning: WFRF:(Kitchell James F.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carpenter, Stephen R., et al. (författare)
  • Ecosystem subsidies : Terrestrial support of aquatic food webs from C-13 addition to contrasting lakes
  • 2005
  • Ingår i: Ecology. - : John Wiley & Sons. - 0012-9658 .- 1939-9170. ; 86:10, s. 2737-2750
  • Tidskriftsartikel (refereegranskat)abstract
    • Whole-lake additions of dissolved inorganic C-13 were used to measure allochthony (the terrestrial contribution of organic carbon to aquatic consumers) in two unproductive lakes (Paul and Peter Lakes in 2001), a nutrient-enriched lake (Peter Lake in 2002), and a dystrophic lake (Tuesday Lake in 2002). Three kinds of dynamic models were used to estimate allochthony: a process-rich, dual-isotope flow model based on mass balances of two carbon isotopes in 12 carbon pools; simple univariate time-series models driven by observed time courses of delta(13)CO(2); and multivariate autoregression models that combined information from time series of delta(13)C in several interacting carbon pools. All three models gave similar estimates of allochthony. In the three experiments without nutrient enrichment, flows of terrestrial carbon to dissolved and particulate organic carbon, zooplankton, Chaoborus, and fishes were substantial. For example, terrestrial sources accounted for more than half the carbon flow to juvenile and adult largemouth bass, pumpkinseed sunfish, golden shiners, brook sticklebacks, and fathead minnows in the unenriched experiments. Allochthony was highest in the dystrophic lake and lowest in the nutrient-enriched lake. Nutrient enrichment of Peter Lake decreased allochthony of zooplankton from 0.34-0.48 to 0-0.12, and of fishes from 0.51-0.80 to 0.25-0.55. These experiments show that lake ecosystem carbon cycles, including carbon flows to consumers, are heavily subsidized by organic carbon from the surrounding landscape.
  •  
2.
  • Pace, Michael L., et al. (författare)
  • Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs
  • 2004
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 427:6971, s. 240-243
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecosystems are supported by organic carbon from two distinct sources. Endogenous carbon is produced by photosynthesis within an ecosystem by autotrophic organisms. Exogenous carbon is produced elsewhere and transported into ecosystems. Consumers may use exogenous carbon with consequent influences on population dynamics, predator-prey relationships and ecosystem processes(1). For example, exogenous inputs provide resources that may enhance consumer abundance beyond levels supported by within-system primary production(2). Exogenous fluxes of organic carbon to ecosystems are often large, but this material is recalcitrant and difficult to assimilate, in contrast to endogenously produced organic matter, which is used more easily(3,4). Here we show, by the experimental manipulation of dissolved inorganic C-13 in two lakes, that internal primary production is insufficient to support the food webs of these ecosystems. Additions of NaH (CO3)-C-13 enriched the C-13 content of dissolved inorganic carbon, particulate organic carbon, zooplankton and fish. Dynamics of C-13 indicate that 40-55% of particulate organic carbon and 22-50% of zooplankton carbon are derived from terrestrial sources, showing that there is significant subsidy of these ecosystems by organic carbon produced outside their boundaries.
  •  
3.
  • Hunsicker, Mary E., et al. (författare)
  • Functional responses and scaling in predator-prey interactions of marine fishes : contemporary issues and emerging concepts
  • 2011
  • Ingår i: Ecology Letters. - : Wiley-Blackwell. - 1461-023X .- 1461-0248. ; 14:12, s. 1288-1299
  • Forskningsöversikt (refereegranskat)abstract
    • Predatorprey interactions are a primary structuring force vital to the resilience of marine communities and sustainability of the worlds oceans. Human influences on marine ecosystems mediate changes in species interactions. This generality is evinced by the cascading effects of overharvesting top predators on the structure and function of marine ecosystems. It follows that ecological forecasting, ecosystem management, and marine spatial planning require a better understanding of food web relationships. Characterising and scaling predatorprey interactions for use in tactical and strategic tools (i.e. multi-species management and ecosystem models) are paramount in this effort. Here, we explore what issues are involved and must be considered to advance the use of predatorprey theory in the context of marine fisheries science. We address pertinent contemporary ecological issues including (1) the approaches and complexities of evaluating predator responses in marine systems; (2) the scaling up of predatorprey interactions to the population, community, and ecosystem level; (3) the role of predatorprey theory in contemporary fisheries and ecosystem modelling approaches; and (4) directions for the future. Our intent is to point out needed research directions that will improve our understanding of predatorprey interactions in the context of the sustainable marine fisheries and ecosystem management.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy