SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Klåvus Anton) "

Sökning: WFRF:(Klåvus Anton)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ronkainen, Justiina, et al. (författare)
  • LongITools: Dynamic longitudinal exposome trajectories in cardiovascular and metabolic noncommunicable diseases
  • 2022
  • Ingår i: Environmental Epidemiology. - 2474-7882. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The current epidemics of cardiovascular and metabolic noncommunicable diseases have emerged alongside dramatic modifications in lifestyle and living environments. These correspond to changes in our "modern" postwar societies globally characterized by rural-to-urban migration, modernization of agricultural practices, and transportation, climate change, and aging. Evidence suggests that these changes are related to each other, although the social and biological mechanisms as well as their interactions have yet to be uncovered. LongITools, as one of the 9 projects included in the European Human Exposome Network, will tackle this environmental health equation linking multidimensional environmental exposures to the occurrence of cardiovascular and metabolic noncommunicable diseases.
  •  
2.
  • de Mello, Vanessa D., et al. (författare)
  • Serum aromatic and branched-chain amino acids associated with NASH demonstrate divergent associations with serum lipids
  • 2021
  • Ingår i: Liver International. - : Wiley. - 1478-3223 .- 1478-3231. ; 41:4, s. 754-763
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & Aims: Non-alcoholic fatty liver disease (NAFLD) has been associated with multiple metabolic abnormalities. By applying a non-targeted metabolomics approach, we aimed at investigating whether serum metabolite profile that associates with NAFLD would differ in its association with NAFLD-related metabolic risk factors. Methods & Results: A total of 233 subjects (mean ± SD: 48.3 ± 9.3 years old; BMI: 43.1 ± 5.4 kg/m2; 64 male) undergoing bariatric surgery were studied. Of these participants, 164 with liver histology could be classified as normal liver (n = 79), simple steatosis (SS, n = 40) or non-alcoholic steatohepatitis (NASH, n = 45). Among the identified fasting serum metabolites with higher levels in those with NASH when compared to those with normal phenotype were the aromatic amino acids (AAAs: tryptophan, tyrosine and phenylalanine), the branched-chain amino acids (BCAAs: leucine and isoleucine), a phosphatidylcholine (PC(16:0/16:1)) and uridine (all FDRp < 0.05). Only tryptophan was significantly higher in those with NASH compared to those with SS (FDRp < 0.05). Only the AAAs tryptophan and tyrosine correlated positively with serum total and LDL cholesterol (FDRp < 0.1), and accordingly, with liver LDLR at mRNA expression level. In addition, tryptophan was the single AA associated with liver DNA methylation of CpG sites known to be differentially methylated in those with NASH. Conclusions: We found that serum levels of the NASH-related AAAs and BCAAs demonstrate divergent associations with serum lipids. The specific correlation of tryptophan with LDL-c may result from the molecular events affecting LDLR mRNA expression and NASH-associated methylation of genes in the liver.
  •  
3.
  • Klåvus, Anton, et al. (författare)
  • “Notame”: Workflow for non-targeted LC-MS metabolic profiling
  • 2020
  • Ingår i: Metabolites. - : MDPI AG. - 2218-1989 .- 2218-1989. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Metabolomics analysis generates vast arrays of data, necessitating comprehensive workflows involving expertise in analytics, biochemistry and bioinformatics in order to provide coherent and high-quality data that enable discovery of robust and biologically significant metabolic findings. In this protocol article, we introduce notame, an analytical workflow for non-targeted metabolic profiling approaches, utilizing liquid chromatography-mass spectrometry analysis. We provide an overview of lab protocols and statistical methods that we commonly practice for the analysis of nutritional metabolomics data. The paper is divided into three main sections: the first and second sections introducing the background and the study designs available for metabolomics research and the third section describing in detail the steps of the main methods and protocols used to produce, preprocess and statistically analyze metabolomics data and, finally, to identify and interpret the compounds that have emerged as interesting.
  •  
4.
  • Koistinen, Ville Mikael, et al. (författare)
  • Metabolic changes in response to varying whole-grain wheat and rye intake
  • 2024
  • Ingår i: npj Science of Food. - 2396-8370. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Epidemiological studies have shown associations between whole-grain intake and lowered disease risk. A sufficient level of whole-grain intake to reach the health benefits has not been established, and there is limited knowledge about the impact of whole-grain intake on metabolite levels. In this clinical intervention study, we aimed to identify plasma and urine metabolites associated with two different intake levels of whole-grain wheat and rye and to correlate them with clinical plasma biomarkers. Healthy volunteers (N = 68) were divided into two groups receiving either whole-grain wheat or whole-grain rye in two four-week interventions with 48 and 96 g/d of whole grains consumed. The metabolomics of the plasma samples was performed with UPLC–QTOF-MS. Plasma alkylresorcinols were quantified with GC-MS and plasma and urinary mammalian lignans with HPLC-ECD. The high-dose intervention impacted the metabolite profile, including microbial metabolites, more in the rye-enriched diet compared with wheat. Among the increased metabolites were alkylresorcinol glucuronides, sinapyl alcohol, and pipecolic acid betaine, while the decreased metabolites included acylcarnitines and ether lipids. Plasma alkylresorcinols, urinary enterolactone, and total mammalian lignans reflected the study diets in a dose-dependent manner. Several key metabolites linked with whole-grain consumption and gut microbial metabolism increased in a linear manner between the two interventions. The results reveal that an increase in whole-grain intake, particularly rye, is strongly reflected in the metabolite profile, is correlated with clinical variables, and suggests that a diet rich in whole grains promotes the growth and/or metabolism of microbes producing potentially beneficial microbial metabolites.
  •  
5.
  • Näätänen, Mari, et al. (författare)
  • Metabolic profiles reflect weight loss maintenance and the composition of diet after very-low-energy diet
  • 2023
  • Ingår i: Clinical Nutrition. - 1532-1983 .- 0261-5614. ; 42:7, s. 1126-1141
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & aims: Diet and weight loss affect circulating metabolome. However, metabolite profiles induced by different weight loss maintenance diets and underlying longer term weight loss maintenance remain unknown. Herein, we investigated after-weight-loss metabolic signatures of two isocaloric 24-wk weight maintenance diets differing in satiety value due to dietary fibre, protein and fat contents and identified metabolite features that associated with successful weight loss maintenance. Methods: Non-targeted LC-MS metabolomics approach was used to analyse plasma metabolites of 79 women and men (mean age ± SD 49.7 ± 9.0 years; BMI 34.2 ± 2.5 kg/m2) participating in a weight management study. Participants underwent a 7-week very-low-energy diet (VLED) and were thereafter randomised into two groups for a 24-week weight maintenance phase. Higher satiety food (HSF) group consumed high-fibre, high-protein, and low-fat products, while lower satiety food (LSF) group consumed isocaloric low-fibre products with average protein and fat content as a part of their weight maintenance diets. Plasma metabolites were analysed before the VLED and before and after the weight maintenance phase. Metabolite features discriminating HSF and LSF groups were annotated. We also analysed metabolite features that discriminated participants who maintained ≥10% weight loss (HWM) and participants who maintained <10% weight loss (LWM) at the end of the study, irrespective of the diet. Finally, we assessed robust linear regression between metabolite features and anthropometric and food group variables. Results: We annotated 126 metabolites that discriminated the HSF and LSF groups and HWM and LWM groups (p < 0.05). Compared to LSF, the HSF group had lower levels of several amino acids, e.g. glutamine, arginine, and glycine, short-, medium- and long-chain acylcarnitines (CARs), odd- and even-chain lysoglycerophospholipids, and higher levels of fatty amides. Compared to LWM, the HWM group in general showed higher levels of glycerophospholipids with a saturated long-chain and a C20:4 fatty acid tail, and unsaturated free fatty acids (FFAs). Changes in several saturated odd- and even-chain LPCs and LPEs and fatty amides were associated with the intake of many food groups, particularly grain and dairy products. Increase in several (lyso)glycerophospholipids was associated with decrease in body weight and adiposity. Increased short- and medium-chain CARs were related to decreased body fat-free mass. Conclusions: Our results show that isocaloric weight maintenance diets differing in dietary fibre, protein, and fat content affected amino acid and lipid metabolism. Increased abundances of several phospholipid species and FFAs were related with greater weight loss maintenance. Our findings indicate common and distinct metabolites for weight and dietary related variables in the context of weight reduction and weight management. The study was registered in isrctn.org with identifier 67529475.
  •  
6.
  • U-Din, Mueez, et al. (författare)
  • Cold-stimulated brown adipose tissue activation is related to changes in serum metabolites relevant to NAD + metabolism in humans
  • 2023
  • Ingår i: Cell Reports. - 2211-1247. ; 42:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Cold-induced brown adipose tissue (BAT) activation is considered to improve metabolic health. In murine BAT, cold increases the fundamental molecule for mitochondrial function, nicotinamide adenine dinucleotide (NAD+), but limited knowledge of NAD+ metabolism during cold in human BAT metabolism exists. We show that cold increases the serum metabolites of the NAD+ salvage pathway (nicotinamide and 1-methylnicotinamide) in humans. Additionally, individuals with cold-stimulated BAT activation have decreased levels of metabolites from the de novo NAD+ biosynthesis pathway (tryptophan, kynurenine). Serum nicotinamide correlates positively with cold-stimulated BAT activation, whereas tryptophan and kynurenine correlate negatively. Furthermore, the expression of genes involved in NAD+ biosynthesis in BAT is related to markers of metabolic health. Our data indicate that cold increases serum tryptophan conversion to nicotinamide to be further utilized by BAT. We conclude that NAD+ metabolism is activated upon cold in humans and is probably regulated in a coordinated fashion by several tissues.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy