SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kleindorfer D. O.) "

Sökning: WFRF:(Kleindorfer D. O.)

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mishra, A., et al. (författare)
  • Stroke genetics informs drug discovery and risk prediction across ancestries
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 611, s. 115-123
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.
  •  
2.
  • Franceschini, N., et al. (författare)
  • GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Carotid artery intima media thickness (cIMT) and carotid plaque are measures of subclinical atherosclerosis associated with ischemic stroke and coronary heart disease (CHD). Here, we undertake meta-analyses of genome-wide association studies (GWAS) in 71,128 individuals for cIMT, and 48,434 individuals for carotid plaque traits. We identify eight novel susceptibility loci for cIMT, one independent association at the previously-identified PINX1 locus, and one novel locus for carotid plaque. Colocalization analysis with nearby vascular expression quantitative loci (cis-eQTLs) derived from arterial wall and metabolic tissues obtained from patients with CHD identifies candidate genes at two potentially additional loci, ADAMTS9 and LOXL4. LD score regression reveals significant genetic correlations between cIMT and plaque traits, and both cIMT and plaque with CHD, any stroke subtype and ischemic stroke. Our study provides insights into genes and tissue-specific regulatory mechanisms linking atherosclerosis both to its functional genomic origins and its clinical consequences in humans. © 2018, The Author(s).
  •  
3.
  •  
4.
  • Pulit, SL, et al. (författare)
  • Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study.
  • 2016
  • Ingår i: The Lancet. Neurology. - 1474-4465. ; 15:2, s. 174-84
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of disease-associated loci through genome-wide association studies (GWAS) is the leading genetic approach to the identification of novel biological pathways underlying diseases in humans. Until recently, GWAS in ischaemic stroke have been limited by small sample sizes and have yielded few loci associated with ischaemic stroke. We did a large-scale GWAS to identify additional susceptibility genes for stroke and its subtypes.To identify genetic loci associated with ischaemic stroke, we did a two-stage GWAS. In the first stage, we included 16851 cases with state-of-the-art phenotyping data and 32473 stroke-free controls. Cases were aged 16 to 104 years, recruited between 1989 and 2012, and subtypes of ischaemic stroke were recorded by centrally trained and certified investigators who used the web-based protocol, Causative Classification of Stroke (CCS). We constructed case-control strata by identifying samples that were genotyped on nearly identical arrays and were of similar genetic ancestral background. We cleaned and imputed data by use of dense imputation reference panels generated from whole-genome sequence data. We did genome-wide testing to identify stroke-associated loci within each stratum for each available phenotype, and we combined summary-level results using inverse variance-weighted fixed-effects meta-analysis. In the second stage, we did in-silico lookups of 1372 single nucleotide polymorphisms identified from the first stage GWAS in 20941 cases and 364736 unique stroke-free controls. The ischaemic stroke subtypes of these cases had previously been established with the Trial of Org 10172 in Acute Stroke Treatment (TOAST) classification system, in accordance with local standards. Results from the two stages were then jointly analysed in a final meta-analysis.We identified a novel locus (G allele at rs12122341) at 1p13.2 near TSPAN2 that was associated with large artery atherosclerosis-related stroke (first stage odds ratio [OR] 1·21, 95% CI 1·13-1·30, p=4·50×10(-8); joint OR 1·19, 1·12-1·26, p=1·30×10(-9)). Our results also supported robust associations with ischaemic stroke for four other loci that have been reported in previous studies, including PITX2 (first stage OR 1·39, 1·29-1·49, p=3·26×10(-19); joint OR 1·37, 1·30-1·45, p=2·79×10(-32)) and ZFHX3 (first stage OR 1·19, 1·11-1·27, p=2·93×10(-7); joint OR 1·17, 1·11-1·23, p=2·29×10(-10)) for cardioembolic stroke, and HDAC9 (first stage OR 1·29, 1·18-1·42, p=3·50×10(-8); joint OR 1·24, 1·15-1·33, p=4·52×10(-9)) for large artery atherosclerosis stroke. The 12q24 locus near ALDH2, which has previously been associated with all ischaemic stroke but not with any specific subtype, exceeded genome-wide significance in the meta-analysis of small artery stroke (first stage OR 1·20, 1·12-1·28, p=6·82×10(-8); joint OR 1·17, 1·11-1·23, p=2·92×10(-9)). Other loci associated with stroke in previous studies, including NINJ2, were not confirmed.Our results suggest that all ischaemic stroke-related loci previously implicated by GWAS are subtype specific. We identified a novel gene associated with large artery atherosclerosis stroke susceptibility. Follow-up studies will be necessary to establish whether the locus near TSPAN2 can be a target for a novel therapeutic approach to stroke prevention. In view of the subtype-specificity of the associations detected, the rich phenotyping data available in the Stroke Genetics Network (SiGN) are likely to be crucial for further genetic discoveries related to ischaemic stroke.US National Institute of Neurological Disorders and Stroke, National Institutes of Health.
  •  
5.
  • Drake, Mattias, et al. (författare)
  • Diffusion-Weighted Imaging, MR Angiography, and Baseline Data in a Systematic Multicenter Analysis of 3,301 MRI Scans of Ischemic Stroke Patients-Neuroradiological Review Within the MRI-GENIE Study
  • 2020
  • Ingår i: Frontiers in Neurology. - : Frontiers Media SA. - 1664-2295. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background:Magnetic resonance imaging (MRI) serves as a cornerstone in defining stroke phenotype and etiological subtype through examination of ischemic stroke lesion appearance and is therefore an essential tool in linking genetic traits and stroke. Building on baseline MRI examinations from the centralized and structured radiological assessments of ischemic stroke patients in the Stroke Genetics Network, the results of the MRI-Genetics Interface Exploration (MRI-GENIE) study are described in this work. Methods:The MRI-GENIE study included patients with symptoms caused by ischemic stroke (N= 3,301) from 12 international centers. We established and used a structured reporting protocol for all assessments. Two neuroradiologists, using a blinded evaluation protocol, independently reviewed the baseline diffusion-weighted images (DWIs) and magnetic resonance angiography images to determine acute lesion and vascular occlusion characteristics. Results:In this systematic multicenter radiological analysis of clinical MRI from 3,301 acute ischemic stroke patients according to a structured prespecified protocol, we identified that anterior circulation infarcts were most prevalent (67.4%), that infarcts in the middle cerebral artery (MCA) territory were the most common, and that the majority of large artery occlusions 0 to 48 h from ictus were in the MCA territory. Multiple acute lesions in one or several vascular territories were common (11%). Of 2,238 patients with unilateral DWI lesions, 52.6% had left-sided infarct lateralization (P= 0.013 for chi(2)test). Conclusions:This large-scale analysis of a multicenter MRI-based cohort of AIS patients presents a unique imaging framework facilitating the relationship between imaging and genetics for advancing the knowledge of genetic traits linked to ischemic stroke.
  •  
6.
  • Frid, Petrea, et al. (författare)
  • Detailed phenotyping of posterior vs. anterior circulation ischemic stroke: a multi-center MRI study
  • 2020
  • Ingår i: Journal of Neurology. - : Springer Science and Business Media LLC. - 0340-5354 .- 1432-1459. ; 267, s. 649-658
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Posterior circulation ischemic stroke (PCiS) constitutes 20-30% of ischemic stroke cases. Detailed information about differences between PCiS and anterior circulation ischemic stroke (ACiS) remains scarce. Such information might guide clinical decision making and prevention strategies. We studied risk factors and ischemic stroke subtypes in PCiS vs. ACiS and lesion location on magnetic resonance imaging (MRI) in PCiS. Methods Out of 3,301 MRIs from 12 sites in the National Institute of Neurological Disorders and Stroke (NINDS) Stroke Genetics Network (SiGN), we included 2,381 cases with acute DWI lesions. The definition of ACiS or PCiS was based on lesion location. We compared the groups using Chi-squared and logistic regression. Results PCiS occurred in 718 (30%) patients and ACiS in 1663 (70%). Diabetes and male sex were more common in PCiS vs. ACiS (diabetes 27% vs. 23%, p < 0.05; male sex 68% vs. 58%, p < 0.001). Both were independently associated with PCiS (diabetes, OR = 1.29; 95% CI 1.04-1.61; male sex, OR = 1.46; 95% CI 1.21-1.78). ACiS more commonly had large artery atherosclerosis (25% vs. 20%, p < 0.01) and cardioembolic mechanisms (17% vs. 11%, p < 0.001) compared to PCiS. Small artery occlusion was more common in PCiS vs. ACiS (20% vs. 14%, p < 0.001). Small artery occlusion accounted for 47% of solitary brainstem infarctions. Conclusion Ischemic stroke subtypes differ between the two phenotypes. Diabetes and male sex have a stronger association with PCiS than ACiS. Definitive MRI-based PCiS diagnosis aids etiological investigation and contributes additional insights into specific risk factors and mechanisms of injury in PCiS.
  •  
7.
  • Giese, A. K., et al. (författare)
  • Design and rationale for examining neuroimaging genetics in ischemic stroke The MRI-GENIE study
  • 2017
  • Ingår i: Neurology-Genetics. - : Ovid Technologies (Wolters Kluwer Health). - 2376-7839. ; 3:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To describe the design and rationale for the genetic analysis of acute and chronic cerebrovascular neuroimaging phenotypes detected on clinical MRI in patients with acute ischemic stroke (AIS) within the scope of the MRI-GENetics Interface Exploration (MRI-GENIE) study.& para;& para;Methods: MRI-GENIE capitalizes on the existing infrastructure of the Stroke Genetics Network (SiGN). In total, 12 international SiGN sites contributed MRIs of 3,301 patients with AIS. Detailed clinical phenotyping with the web-based Causative Classification of Stroke (CCS) system and genome-wide genotyping data were available for all participants. Neuroimaging analyses include the manual and automated assessments of established MRI markers. A high-throughput MRI analysis pipeline for the automated assessment of cerebrovascular lesions on clinical scans will be developed in a subset of scans for both acute and chronic lesions, validated against gold standard, and applied to all available scans. The extracted neuroimaging phenotypes will improve characterization of acute and chronic cerebrovascular lesions in ischemic stroke, including CCS subtypes, and their effect on functional outcomes after stroke. Moreover, genetic testing will uncover variants associated with acute and chronic MRI manifestations of cerebrovascular disease.& para;& para;Conclusions: The MRI-GENIE study aims to develop, validate, and distribute the MRI analysis platform for scans acquired as part of clinical care for patients with AIS, which will lead to (1) novel genetic discoveries in ischemic stroke, (2) strategies for personalized stroke risk assessment, and (3) personalized stroke outcome assessment.
  •  
8.
  • Giese, A. K., et al. (författare)
  • White matter hyperintensity burden in acute stroke patients differs by ischemic stroke subtype
  • 2020
  • Ingår i: Neurology. - : Ovid Technologies (Wolters Kluwer Health). - 0028-3878 .- 1526-632X. ; 95:1
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectiveTo examine etiologic stroke subtypes and vascular risk factor profiles and their association with white matter hyperintensity (WMH) burden in patients hospitalized for acute ischemic stroke (AIS).MethodsFor the MRI Genetics Interface Exploration (MRI-GENIE) study, we systematically assembled brain imaging and phenotypic data for 3,301 patients with AIS. All cases underwent standardized web tool-based stroke subtyping with the Causative Classification of Ischemic Stroke (CCS). WMH volume (WMHv) was measured on T2 brain MRI scans of 2,529 patients with a fully automated deep-learning trained algorithm. Univariable and multivariable linear mixed-effects modeling was carried out to investigate the relationship of vascular risk factors with WMHv and CCS subtypes.ResultsPatients with AIS with large artery atherosclerosis, major cardioembolic stroke, small artery occlusion (SAO), other, and undetermined causes of AIS differed significantly in their vascular risk factor profile (all p < 0.001). Median WMHv in all patients with AIS was 5.86 cm(3) (interquartile range 2.18-14.61 cm(3)) and differed significantly across CCS subtypes (p < 0.0001). In multivariable analysis, age, hypertension, prior stroke, smoking (all p < 0.001), and diabetes mellitus (p = 0.041) were independent predictors of WMHv. When adjusted for confounders, patients with SAO had significantly higher WMHv compared to those with all other stroke subtypes (p < 0.001).ConclusionIn this international multicenter, hospital-based cohort of patients with AIS, we demonstrate that vascular risk factor profiles and extent of WMH burden differ by CCS subtype, with the highest lesion burden detected in patients with SAO. These findings further support the small vessel hypothesis of WMH lesions detected on brain MRI of patients with ischemic stroke.
  •  
9.
  • Frid, P., et al. (författare)
  • Migraine-associated common genetic variants confer greater risk of posterior vs. anterior circulation ischemic stroke☆
  • 2022
  • Ingår i: Journal of Stroke and Cerebrovascular Diseases. - : Elsevier BV. - 1052-3057. ; 31:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To examine potential genetic relationships between migraine and the two distinct phenotypes posterior circulation ischemic stroke (PCiS) and anterior circulation ischemic stroke (ACiS), we generated migraine polygenic risk scores (PRSs) and compared these between PCiS and ACiS, and separately vs. non-stroke control subjects. Methods: Acute ischemic stroke cases were classified as PCiS or ACiS based on lesion location on diffusion-weighted MRI. Exclusion criteria were lesions in both vascular territories or uncertain territory; supratentorial PCiS with ipsilateral fetal posterior cerebral artery; and cases with atrial fibrillation. We generated migraine PRS for three migraine phenotypes (any migraine; migraine without aura; migraine with aura) using publicly available GWAS data and compared mean PRSs separately for PCiS and ACiS vs. non-stroke control subjects, and between each stroke phenotype. Results: Our primary analyses included 464 PCiS and 1079 ACiS patients with genetic European ancestry. Compared to non-stroke control subjects (n=15396), PRSs of any migraine were associated with increased risk of PCiS (p=0.01–0.03) and decreased risk of ACiS (p=0.010–0.039). Migraine without aura PRSs were significantly associated with PCiS (p=0.008–0.028), but not with ACiS. When comparing PCiS vs. ACiS directly, migraine PRSs were higher in PCiS vs. ACiS for any migraine (p=0.001–0.010) and migraine without aura (p=0.032–0.048). Migraine with aura PRS did not show a differential association in our analyses. Conclusions: Our results suggest a stronger genetic overlap between unspecified migraine and migraine without aura with PCiS compared to ACiS. Possible shared mechanisms include dysregulation of cerebral vessel endothelial function.
  •  
10.
  •  
11.
  •  
12.
  • Woo, Daniel, et al. (författare)
  • Meta-Analysis of Genome-Wide Association Studies Identifies 1q22 as a Susceptibility Locus for Intracerebral Hemorrhage.
  • 2014
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 94:4, s. 511-521
  • Tidskriftsartikel (refereegranskat)abstract
    • Intracerebral hemorrhage (ICH) is the stroke subtype with the worst prognosis and has no established acute treatment. ICH is classified as lobar or nonlobar based on the location of ruptured blood vessels within the brain. These different locations also signal different underlying vascular pathologies. Heritability estimates indicate a substantial genetic contribution to risk of ICH in both locations. We report a genome-wide association study of this condition that meta-analyzed data from six studies that enrolled individuals of European ancestry. Case subjects were ascertained by neurologists blinded to genotype data and classified as lobar or nonlobar based on brain computed tomography. ICH-free control subjects were sampled from ambulatory clinics or random digit dialing. Replication of signals identified in the discovery cohort with p < 1 × 10(-6) was pursued in an independent multiethnic sample utilizing both direct and genome-wide genotyping. The discovery phase included a case cohort of 1,545 individuals (664 lobar and 881 nonlobar cases) and a control cohort of 1,481 individuals and identified two susceptibility loci: for lobar ICH, chromosomal region 12q21.1 (rs11179580, odds ratio [OR] = 1.56, p = 7.0 × 10(-8)); and for nonlobar ICH, chromosomal region 1q22 (rs2984613, OR = 1.44, p = 1.6 × 10(-8)). The replication included a case cohort of 1,681 individuals (484 lobar and 1,194 nonlobar cases) and a control cohort of 2,261 individuals and corroborated the association for 1q22 (p = 6.5 × 10(-4); meta-analysis p = 2.2 × 10(-10)) but not for 12q21.1 (p = 0.55; meta-analysis p = 2.6 × 10(-5)). These results demonstrate biological heterogeneity across ICH subtypes and highlight the importance of ascertaining ICH cases accordingly.
  •  
13.
  • Giese, Anne Katrin, et al. (författare)
  • Design and rationale for examining neuroimaging genetics in ischemic stroke : The MRI-GENIE study
  • 2017
  • Ingår i: Neurology: Genetics. - 2376-7839. ; 3:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To describe the design and rationale for the genetic analysis of acute and chronic cerebrovascular neuroimaging phenotypes detected on clinical MRI in patients with acute ischemic stroke (AIS) within the scope of the MRI-GENetics Interface Exploration (MRI-GENIE) study. Methods: MRI-GENIE capitalizes on the existing infrastructure of the Stroke Genetics Network (SiGN). In total, 12 international SiGN sites contributedMRIs of 3,301 patients with AIS. Detailed clinical phenotyping with the web-based Causative Classification of Stroke (CCS) system and genome-wide genotyping data were available for all participants. Neuroimaging analyses include themanual and automated assessments of established MRI markers. A high-throughputMRI analysis pipeline for the automated assessment of cerebrovascular lesions on clinical scans will be developed in a subset of scans for both acute and chronic lesions, validated against gold standard, and applied to all available scans. The extracted neuroimaging phenotypes will improve characterization of acute and chronic cerebrovascular lesions in ischemic stroke, including CCS subtypes, and their effect on functional outcomes after stroke. Moreover, genetic testing will uncover variants associated with acute and chronic MRI manifestations of cerebrovascular disease.Conclusions: The MRI-GENIE study aims to develop, validate, and distribute the MRI analysis platform for scans acquired as part of clinical care for patients with AIS, which will lead to (1) novel genetic discoveries in ischemic stroke, (2) strategies for personalized stroke risk assessment, and (3) personalized stroke outcome assessment.
  •  
14.
  • Giese, Anne Katrin, et al. (författare)
  • White matter hyperintensity burden in acute stroke patients differs by ischemic stroke subtype
  • 2020
  • Ingår i: Neurology. - 0028-3878. ; 95:1, s. 79-88
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectiveTo examine etiologic stroke subtypes and vascular risk factor profiles and their association with white matter hyperintensity (WMH) burden in patients hospitalized for acute ischemic stroke (AIS).MethodsFor the MRI Genetics Interface Exploration (MRI-GENIE) study, we systematically assembled brain imaging and phenotypic data for 3,301 patients with AIS. All cases underwent standardized web tool-based stroke subtyping with the Causative Classification of Ischemic Stroke (CCS). WMH volume (WMHv) was measured on T2 brain MRI scans of 2,529 patients with a fully automated deep-learning trained algorithm. Univariable and multivariable linear mixed-effects modeling was carried out to investigate the relationship of vascular risk factors with WMHv and CCS subtypes.ResultsPatients with AIS with large artery atherosclerosis, major cardioembolic stroke, small artery occlusion (SAO), other, and undetermined causes of AIS differed significantly in their vascular risk factor profile (all p < 0.001). Median WMHv in all patients with AIS was 5.86 cm3 (interquartile range 2.18-14.61 cm3) and differed significantly across CCS subtypes (p < 0.0001). In multivariable analysis, age, hypertension, prior stroke, smoking (all p < 0.001), and diabetes mellitus (p = 0.041) were independent predictors of WMHv. When adjusted for confounders, patients with SAO had significantly higher WMHv compared to those with all other stroke subtypes (p < 0.001).ConclusionIn this international multicenter, hospital-based cohort of patients with AIS, we demonstrate that vascular risk factor profiles and extent of WMH burden differ by CCS subtype, with the highest lesion burden detected in patients with SAO. These findings further support the small vessel hypothesis of WMH lesions detected on brain MRI of patients with ischemic stroke.
  •  
15.
  • Ay, Hakan, et al. (författare)
  • Pathogenic Ischemic Stroke Phenotypes in the NINDS-Stroke Genetics Network
  • 2014
  • Ingår i: Stroke. - 0039-2499. ; 45:12, s. 3589-3596
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND PURPOSE: NINDS (National Institute of Neurological Disorders and Stroke)-SiGN (Stroke Genetics Network) is an international consortium of ischemic stroke studies that aims to generate high-quality phenotype data to identify the genetic basis of pathogenic stroke subtypes. This analysis characterizes the etiopathogenetic basis of ischemic stroke and reliability of stroke classification in the consortium. METHODS: Fifty-two trained and certified adjudicators determined both phenotypic (abnormal test findings categorized in major pathogenic groups without weighting toward the most likely cause) and causative ischemic stroke subtypes in 16954 subjects with imaging-confirmed ischemic stroke from 12 US studies and 11 studies from 8 European countries using the web-based Causative Classification of Stroke System. Classification reliability was assessed with blinded readjudication of 1509 randomly selected cases. RESULTS: The distribution of pathogenic categories varied by study, age, sex, and race (P<0.001 for each). Overall, only 40% to 54% of cases with a given major ischemic stroke pathogenesis (phenotypic subtype) were classified into the same final causative category with high confidence. There was good agreement for both causative (κ 0.72; 95% confidence interval, 0.69-0.75) and phenotypic classifications (κ 0.73; 95% confidence interval, 0.70-0.75). CONCLUSIONS: This study demonstrates that pathogenic subtypes can be determined with good reliability in studies that include investigators with different expertise and background, institutions with different stroke evaluation protocols and geographic location, and patient populations with different epidemiological characteristics. The discordance between phenotypic and causative stroke subtypes highlights the fact that the presence of an abnormality in a patient with stroke does not necessarily mean that it is the cause of stroke.
  •  
16.
  • Falcone, Guido J., et al. (författare)
  • Burden of Risk Alleles for Hypertension Increases Risk of Intracerebral Hemorrhage
  • 2012
  • Ingår i: Stroke: a journal of cerebral circulation. - 1524-4628. ; 43:11, s. 2877-2883
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose-Genetic variation influences risk of intracerebral hemorrhage (ICH). Hypertension (HTN) is a potent risk factor for ICH and several common genetic variants (single nucleotide polymorphisms [SNPs]) associated with blood pressure levels have been identified. We sought to determine whether the cumulative burden of blood pressure-related SNPs is associated with risk of ICH and pre-ICH diagnosis of HTN. Methods-We conducted a prospective multicenter case-control study in 2272 subjects of European ancestry (1025 cases and 1247 control subjects). Thirty-nine SNPs reported to be associated with blood pressure levels were identified from the National Human Genome Research Institute genomewide association study catalog. Single-SNP association analyses were performed for the outcomes ICH and pre-ICH HTN. Subsequently, weighted and unweighted genetic risk scores were constructed using these SNPs and entered as the independent variable in logistic regression models with ICH and pre-ICH HTN as the dependent variables. Results-No single SNP was associated with either ICH or pre-ICH HTN. The blood pressure-based unweighted genetic risk score was associated with risk of ICH (OR, 1.11; 95% CI, 1.02-1.21; P=0.01) and the subset of ICH in deep regions (OR, 1.18; 95% CI, 1.07-1.30; P=0.001), but not with the subset of lobar ICH. The score was associated with a history of HTN among control subjects (OR, 1.17; 95% CI, 1.04-1.31; P=0.009) and ICH cases (OR, 1.15; 95% CI, 1.01-1.31; P=0.04). Similar results were obtained when using a weighted score. Conclusion-Increasing numbers of high blood pressure-related alleles are associated with increased risk of deep ICH as well as with clinically identified HTN. (Stroke. 2012; 43: 2877-2883.)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy