SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Koivula Robert W) "

Sökning: WFRF:(Koivula Robert W)

  • Resultat 1-25 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tobias, Deirdre K, et al. (författare)
  • Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine
  • 2023
  • Ingår i: Nature Medicine. - 1546-170X. ; 29:10, s. 2438-2457
  • Forskningsöversikt (refereegranskat)abstract
    • Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.
  •  
2.
  • Kato, Norihiro, et al. (författare)
  • Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation
  • 2015
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 47:11, s. 1282-1293
  • Tidskriftsartikel (refereegranskat)abstract
    • We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10−11 to 5.0 × 10−21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10−6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation.
  •  
3.
  • Hudson, Lawrence N, et al. (författare)
  • The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project
  • 2017
  • Ingår i: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 7:1, s. 145-188
  • Tidskriftsartikel (refereegranskat)abstract
    • The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
  •  
4.
  • Ahmad, Shafqat, et al. (författare)
  • Gene x physical activity interactions in obesity : combined analysis of 111,421 individuals of European ancestry
  • 2013
  • Ingår i: PLOS Genetics. - : Public Library of Science. - 1553-7390 .- 1553-7404. ; 9:7, s. e1003607-
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerous obesity loci have been identified using genome-wide association studies. A UK study indicated that physical activity may attenuate the cumulative effect of 12 of these loci, but replication studies are lacking. Therefore, we tested whether the aggregate effect of these loci is diminished in adults of European ancestry reporting high levels of physical activity. Twelve obesity-susceptibility loci were genotyped or imputed in 111,421 participants. A genetic risk score (GRS) was calculated by summing the BMI-associated alleles of each genetic variant. Physical activity was assessed using self-administered questionnaires. Multiplicative interactions between the GRS and physical activity on BMI were tested in linear and logistic regression models in each cohort, with adjustment for age, age(2), sex, study center (for multicenter studies), and the marginal terms for physical activity and the GRS. These results were combined using meta-analysis weighted by cohort sample size. The meta-analysis yielded a statistically significant GRS x physical activity interaction effect estimate (P-interaction = 0.015). However, a statistically significant interaction effect was only apparent in North American cohorts (n = 39,810, P-interaction = 0.014 vs. n = 71,611, P-interaction = 0.275 for Europeans). In secondary analyses, both the FTO rs1121980 (P-interaction = 0.003) and the SEC16B rs10913469 (P-interaction = 0.025) variants showed evidence of SNP x physical activity interactions. This meta-analysis of 111,421 individuals provides further support for an interaction between physical activity and a GRS in obesity disposition, although these findings hinge on the inclusion of cohorts from North America, indicating that these results are either population-specific or non-causal.
  •  
5.
  • Bizzotto, Roberto, et al. (författare)
  • Processes Underlying Glycemic Deterioration in Type 2 Diabetes : An IMI DIRECT Study
  • 2021
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 44:2, s. 511-518
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: We investigated the processes underlying glycemic deterioration in type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS: A total of 732 recently diagnosed patients with T2D from the Innovative Medicines Initiative Diabetes Research on Patient Stratification (IMI DIRECT) study were extensively phenotyped over 3 years, including measures of insulin sensitivity (OGIS), β-cell glucose sensitivity (GS), and insulin clearance (CLIm) from mixed meal tests, liver enzymes, lipid profiles, and baseline regional fat from MRI. The associations between the longitudinal metabolic patterns and HbA1c deterioration, adjusted for changes in BMI and in diabetes medications, were assessed via stepwise multivariable linear and logistic regression. RESULTS: Faster HbA1c progression was independently associated with faster deterioration of OGIS and GS and increasing CLIm; visceral or liver fat, HDL-cholesterol, and triglycerides had further independent, though weaker, roles (R2 = 0.38). A subgroup of patients with a markedly higher progression rate (fast progressors) was clearly distinguishable considering these variables only (discrimination capacity from area under the receiver operating characteristic = 0.94). The proportion of fast progressors was reduced from 56% to 8-10% in subgroups in which only one trait among OGIS, GS, and CLIm was relatively stable (odds ratios 0.07-0.09). T2D polygenic risk score and baseline pancreatic fat, glucagon-like peptide 1, glucagon, diet, and physical activity did not show an independent role. CONCLUSIONS: Deteriorating insulin sensitivity and β-cell function, increasing insulin clearance, high visceral or liver fat, and worsening of the lipid profile are the crucial factors mediating glycemic deterioration of patients with T2D in the initial phase of the disease. Stabilization of a single trait among insulin sensitivity, β-cell function, and insulin clearance may be relevant to prevent progression.
  •  
6.
  • Koivula, Robert W., et al. (författare)
  • Discovery of biomarkers for glycaemic deterioration before and after the onset of type 2 diabetes : descriptive characteristics of the epidemiological studies within the IMI DIRECT Consortium
  • 2019
  • Ingår i: Diabetologia. - : Springer. - 0012-186X .- 1432-0428. ; 62:9, s. 1601-1615
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Here, we describe the characteristics of the Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) epidemiological cohorts at baseline and follow-up examinations (18, 36 and 48 months of follow-up).Methods: From a sampling frame of 24,682 adults of European ancestry enrolled in population-based cohorts across Europe, participants at varying risk of glycaemic deterioration were identified using a risk prediction algorithm (based on age, BMI, waist circumference, use of antihypertensive medication, smoking status and parental history of type 2 diabetes) and enrolled into a prospective cohort study (n = 2127) (cohort 1, prediabetes risk). We also recruited people from clinical registries with type 2 diabetes diagnosed 6-24 months previously (n = 789) into a second cohort study (cohort 2, diabetes). Follow-up examinations took place at similar to 18 months (both cohorts) and at similar to 48 months (cohort 1) or similar to 36 months (cohort 2) after baseline examinations. The cohorts were studied in parallel using matched protocols across seven clinical centres in northern Europe.Results: Using ADA 2011 glycaemic categories, 33% (n = 693) of cohort 1 (prediabetes risk) had normal glucose regulation and 67% (n = 1419) had impaired glucose regulation. Seventy-six per cent of participants in cohort 1 was male. Cohort 1 participants had the following characteristics (mean +/- SD) at baseline: age 62 (6.2) years; BMI 27.9 (4.0) kg/m(2); fasting glucose 5.7 (0.6) mmol/l; 2 h glucose 5.9 (1.6) mmol/l. At the final follow-up examination the participants' clinical characteristics were as follows: fasting glucose 6.0 (0.6) mmol/l; 2 h OGTT glucose 6.5 (2.0) mmol/l. In cohort 2 (diabetes), 66% (n = 517) were treated by lifestyle modification and 34% (n = 272) were treated with metformin plus lifestyle modification at enrolment. Fifty-eight per cent of participants in cohort 2 was male. Cohort 2 participants had the following characteristics at baseline: age 62 (8.1) years; BMI 30.5 (5.0) kg/m(2); fasting glucose 7.2 (1.4) mmol/l; 2 h glucose 8.6 (2.8) mmol/l. At the final follow-up examination, the participants' clinical characteristics were as follows: fasting glucose 7.9 (2.0) mmol/l; 2 h mixed-meal tolerance test glucose 9.9 (3.4) mmol/l.Conclusions/interpretation: The IMI DIRECT cohorts are intensely characterised, with a wide-variety of metabolically relevant measures assessed prospectively. We anticipate that the cohorts, made available through managed access, will provide a powerful resource for biomarker discovery, multivariate aetiological analyses and reclassification of patients for the prevention and treatment of type 2 diabetes.
  •  
7.
  • Obura, Morgan, et al. (författare)
  • Post-load glucose subgroups and associated metabolic traits in individuals with type 2 diabetes : An IMI-DIRECT study
  • 2020
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 15:11
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM: Subclasses of different glycaemic disturbances could explain the variation in characteristics of individuals with type 2 diabetes (T2D). We aimed to examine the association between subgroups based on their glucose curves during a five-point mixed-meal tolerance test (MMT) and metabolic traits at baseline and glycaemic deterioration in individuals with T2D. METHODS: The study included 787 individuals with newly diagnosed T2D from the Diabetes Research on Patient Stratification (IMI-DIRECT) Study. Latent class trajectory analysis (LCTA) was used to identify distinct glucose curve subgroups during a five-point MMT. Using general linear models, these subgroups were associated with metabolic traits at baseline and after 18 months of follow up, adjusted for potential confounders. RESULTS: At baseline, we identified three glucose curve subgroups, labelled in order of increasing glucose peak levels as subgroup 1-3. Individuals in subgroup 2 and 3 were more likely to have higher levels of HbA1c, triglycerides and BMI at baseline, compared to those in subgroup 1. At 18 months (n = 651), the beta coefficients (95% CI) for change in HbA1c (mmol/mol) increased across subgroups with 0.37 (-0.18-1.92) for subgroup 2 and 1.88 (-0.08-3.85) for subgroup 3, relative to subgroup 1. The same trend was observed for change in levels of triglycerides and fasting glucose. CONCLUSIONS: Different glycaemic profiles with different metabolic traits and different degrees of subsequent glycaemic deterioration can be identified using data from a frequently sampled mixed-meal tolerance test in individuals with T2D. Subgroups with the highest peaks had greater metabolic risk.
  •  
8.
  • Tura, Andrea, et al. (författare)
  • Profiles of Glucose Metabolism in Different Prediabetes Phenotypes, Classified by Fasting Glycemia, 2-Hour OGTT, Glycated Hemoglobin, and 1-Hour OGTT : An IMI DIRECT Study
  • 2021
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 70:9, s. 2092-2106
  • Tidskriftsartikel (refereegranskat)abstract
    • Differences in glucose metabolism among categories of prediabetes have not been systematically investigated. In this longitudinal study, participants (N = 2,111) underwent a 2-h 75-g oral glucose tolerance test (OGTT) at baseline and 48 months. HbA1c was also measured. We classified participants as having isolated prediabetes defect (impaired fasting glucose [IFG], impaired glucose tolerance [IGT], or HbA1c indicative of prediabetes [IA1c]), two defects (IFG+IGT, IFG+IA1c, or IGT+IA1c), or all defects (IFG+IGT+IA1c). β-Cell function (BCF) and insulin sensitivity were assessed from OGTT. At baseline, in pooling of participants with isolated defects, they showed impairment in both BCF and insulin sensitivity compared with healthy control subjects. Pooled groups with two or three defects showed progressive further deterioration. Among groups with isolated defect, those with IGT showed lower insulin sensitivity, insulin secretion at reference glucose (ISRr), and insulin secretion potentiation (P < 0.002). Conversely, those with IA1c showed higher insulin sensitivity and ISRr (P < 0.0001). Among groups with two defects, we similarly found differences in both BCF and insulin sensitivity. At 48 months, we found higher type 2 diabetes incidence for progressively increasing number of prediabetes defects (odds ratio >2, P < 0.008). In conclusion, the prediabetes groups showed differences in type/degree of glucometabolic impairment. Compared with the pooled group with isolated defects, those with double or triple defect showed progressive differences in diabetes incidence.
  •  
9.
  • Atabaki-Pasdar, Naeimeh, et al. (författare)
  • Inferring causal pathways between metabolic processes and liver fat accumulation: an IMI DIRECT study
  • 2021
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD) often co-occur. Defining causal pathways underlying this relationship may help optimize the prevention and treatment of both diseases. Thus, we assessed the strength and magnitude of the putative causal pathways linking dysglycemia and fatty liver, using a combination of causal inference methods.Measures of glycemia, insulin dynamics, magnetic resonance imaging (MRI)-derived abdominal and liver fat content, serological biomarkers, lifestyle, and anthropometry were obtained in participants from the IMI DIRECT cohorts (n=795 with new onset T2D and 2234 individuals free from diabetes). UK Biobank (n=3641) was used for modelling and replication purposes. Bayesian networks were employed to infer causal pathways, with causal validation using two-sample Mendelian randomization.Bayesian networks fitted to IMI DIRECT data identified higher basal insulin secretion rate (BasalISR) and MRI-derived excess visceral fat (VAT) accumulation as the features of dysmetabolism most likely to cause liver fat accumulation; the unconditional probability of fatty liver (>5%) increased significantly when conditioning on high levels of BasalISR and VAT (by 23%, 32% respectively; 40% for both). Analyses in UK Biobank yielded comparable results. MR confirmed most causal pathways predicted by the Bayesian networks.Here, BasalISR had the highest causal effect on fatty liver predisposition, providing mechanistic evidence underpinning the established association of NAFLD and T2D. BasalISR may represent a pragmatic biomarker for NAFLD prediction in clinical practice.Competing Interest StatementHR is an employee and shareholder of Sanofi. MIM: The views expressed in this article are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health. MIM has served on advisory panels for Pfizer, NovoNordisk and Zoe Global, has received honoraria from Merck, Pfizer, Novo Nordisk and Eli Lilly, and research funding from Abbvie, Astra Zeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, NovoNordisk, Pfizer, Roche, Sanofi Aventis, Servier, and Takeda. As of June 2019, MIM is an employee of Genentech, and a holder of Roche stock. AM is a consultant for Lilly and has received research grants from several diabetes drug companies. PWF has received research grants from numerous diabetes drug companies and fess as consultant from Novo Nordisk, Lilly, and Zoe Global Ltd. He is currently the Scientific Director in Patient Care at the Novo Nordisk Foundation. Other authors declare non competing interests.Funding StatementThe work leading to this publication has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement 115317 (DIRECT) resources of which are composed of financial contribution from the European Union Seventh Framework Programme (FP7/2007-2013) and EFPIA companies in kind contribution. NAP is supported in part by Henning och Johan Throne-Holsts Foundation, Hans Werthen Foundation, an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. HPM is supported by an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. AGJ is supported by an NIHR Clinician Scientist award (17/0005624). RK is funded by the Novo Nordisk Foundation (NNF18OC0031650) as part of a postdoctoral fellowship, an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. AK, PM, HF, JF and GNG are supported by an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. TJM is funded by an NIHR clinical senior lecturer fellowship. S.Bru acknowledges support from the Novo Nordisk Foundation (grants NNF17OC0027594 and NNF14CC0001). ATH is a Wellcome Trust Senior Investigator and is also supported by the NIHR Exeter Clinical Research Facility. JMS acknowledges support from Science for Life Laboratory (Plasma Profiling Facility), Knut and Alice Wallenberg Foundation (Human Protein Atlas) and Erling-Persson Foundation (KTH Centre for Precision Medicine). MIM is supported by the following grants; Wellcome (090532, 098381, 106130, 203141, 212259); NIH (U01-DK105535). PWF is supported by an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Approval for the study protocol was obtained from each of the regional research ethics review boards separately (Lund, Sweden: 20130312105459927, Copenhagen, Denmark: H-1-2012-166 and H-1-2012-100, Amsterdam, Netherlands: NL40099.029.12, Newcastle, Dundee and Exeter, UK: 12/NE/0132), and all participants provided written informed consent at enrolment. The research conformed to the ethical principles for medical research involving human participants outlined in the Declaration of Helsinki.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAuthors agree to make data and materials supporting the results or analyses presented in their paper available upon reasonable request
  •  
10.
  • Dawed, Adem Y., et al. (författare)
  • Variation in the plasma membrane monoamine transporter (PMAT) (encoded by SLC29A4) and organic cation transporter 1 (OCT1) (encoded by SLC22A1) and gastrointestinal intolerance to metformin in type 2 diabetes : An IMI direct study
  • 2019
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 0149-5992 .- 1935-5548. ; 42:6, s. 1027-1033
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE Gastrointestinal adverse effects occur in 20–30% of patients with metformin-treated type 2 diabetes, leading to premature discontinuation in 5–10% of the cases. Gastrointestinal intolerance may reflect localized high concentrations of metformin in the gut. We hypothesized that reduced transport of metformin via the plasma membrane monoamine transporter (PMAT) and organic cation transporter 1 (OCT1) could increase the risk of severe gastrointestinal adverse effects. RESEARCH DESIGN AND METHODS The study included 286 severe metformin-intolerant and 1,128 metformin-tolerant individuals from the IMI DIRECT (Innovative Medicines Initiative: DIabetes REsearCh on patient straTification) consortium. We assessed the association of patient characteristics, concomitant medication, and the burden of mutations in the SLC29A4 and SLC22A1 genes on odds of intolerance. RESULTS Women (P < 0.001) and older people (P < 0.001) were more likely to develop metformin intolerance. Concomitant use of transporter-inhibiting drugs increased the odds of intolerance (odds ratio [OR] 1.72, P < 0.001). In an adjusted logistic regression model, the G allele at rs3889348 (SLC29A4) was associated with gastrointestinal intolerance (OR 1.34, P = 0.005). rs3889348 is the top cis-expression quantitative trait locus for SLC29A4 in gut tissue where carriers of the G allele had reduced expression. Homozygous carriers of the G allele treated with transporter-inhibiting drugs had more than three times higher odds of intolerance compared with carriers of no G allele and not treated with inhibiting drugs (OR 3.23, P < 0.001). Use of a genetic risk score derived from rs3889348 and SLC22A1 variants found that the odds of intolerance were more than twice as high in individuals who carry three or more risk alleles compared with those carrying none (OR 2.15, P = 0.01). CONCLUSIONS These results suggest that intestinal metformin transporters and concomitant medications play an important role in the gastrointestinal adverse effects of metformin.
  •  
11.
  • de Klerk, Juliette A., et al. (författare)
  • Altered blood gene expression in the obesity-related type 2 diabetes cluster may be causally involved in lipid metabolism : a Mendelian randomisation study
  • 2023
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 66:6, s. 1057-1070
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: The aim of this study was to identify differentially expressed long non-coding RNAs (lncRNAs) and mRNAs in whole blood of people with type 2 diabetes across five different clusters: severe insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD), mild obesity-related diabetes (MOD), mild diabetes (MD) and mild diabetes with high HDL-cholesterol (MDH). This was to increase our understanding of different molecular mechanisms underlying the five putative clusters of type 2 diabetes. Methods: Participants in the Hoorn Diabetes Care System (DCS) cohort were clustered based on age, BMI, HbA1c, C-peptide and HDL-cholesterol. Whole blood RNA-seq was used to identify differentially expressed lncRNAs and mRNAs in a cluster compared with all others. Differentially expressed genes were validated in the Innovative Medicines Initiative DIabetes REsearCh on patient straTification (IMI DIRECT) study. Expression quantitative trait loci (eQTLs) for differentially expressed RNAs were obtained from a publicly available dataset. To estimate the causal effects of RNAs on traits, a two-sample Mendelian randomisation analysis was performed using public genome-wide association study (GWAS) data. Results: Eleven lncRNAs and 175 mRNAs were differentially expressed in the MOD cluster, the lncRNA AL354696.2 was upregulated in the SIDD cluster and GPR15 mRNA was downregulated in the MDH cluster. mRNAs and lncRNAs that were differentially expressed in the MOD cluster were correlated among each other. Six lncRNAs and 120 mRNAs validated in the IMI DIRECT study. Using two-sample Mendelian randomisation, we found 52 mRNAs to have a causal effect on anthropometric traits (n=23) and lipid metabolism traits (n=10). GPR146 showed a causal effect on plasma HDL-cholesterol levels (p = 2×10–15), without evidence for reverse causality. Conclusions/interpretation: Multiple lncRNAs and mRNAs were found to be differentially expressed among clusters and particularly in the MOD cluster. mRNAs in the MOD cluster showed a possible causal effect on anthropometric traits, lipid metabolism traits and blood cell fractions. Together, our results show that individuals in the MOD cluster show aberrant RNA expression of genes that have a suggested causal role on multiple diabetes-relevant traits.
  •  
12.
  • Deshmukh, Harshal A., et al. (författare)
  • Genome-Wide Association Analysis of Pancreatic Beta-Cell Glucose Sensitivity
  • 2021
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 106:1, s. 80-90
  • Tidskriftsartikel (refereegranskat)abstract
    • CONTEXT: Pancreatic beta-cell glucose sensitivity is the slope of the plasma glucose-insulin secretion relationship and is a key predictor of deteriorating glucose tolerance and development of type 2 diabetes. However, there are no large-scale studies looking at the genetic determinants of beta-cell glucose sensitivity. OBJECTIVE: To understand the genetic determinants of pancreatic beta-cell glucose sensitivity using genome-wide meta-analysis and candidate gene studies. DESIGN: We performed a genome-wide meta-analysis for beta-cell glucose sensitivity in subjects with type 2 diabetes and nondiabetic subjects from 6 independent cohorts (n = 5706). Beta-cell glucose sensitivity was calculated from mixed meal and oral glucose tolerance tests, and its associations between known glycemia-related single nucleotide polymorphisms (SNPs) and genome-wide association study (GWAS) SNPs were estimated using linear regression models. RESULTS: Beta-cell glucose sensitivity was moderately heritable (h2 ranged from 34% to 55%) using SNP and family-based analyses. GWAS meta-analysis identified multiple correlated SNPs in the CDKAL1 gene and GIPR-QPCTL gene loci that reached genome-wide significance, with SNP rs2238691 in GIPR-QPCTL (P value = 2.64 × 10-9) and rs9368219 in the CDKAL1 (P value = 3.15 × 10-9) showing the strongest association with beta-cell glucose sensitivity. These loci surpassed genome-wide significance when the GWAS meta-analysis was repeated after exclusion of the diabetic subjects. After correction for multiple testing, glycemia-associated SNPs in or near the HHEX and IGF2B2 loci were also associated with beta-cell glucose sensitivity. CONCLUSION: We show that, variation at the GIPR-QPCTL and CDKAL1 loci are key determinants of pancreatic beta-cell glucose sensitivity.
  •  
13.
  • Eriksen, Rebeca, et al. (författare)
  • Dietary metabolite profiling brings new insight into the relationship between nutrition and metabolic risk : An IMI DIRECT study
  • 2020
  • Ingår i: EBioMedicine. - : Elsevier BV. - 2352-3964. ; 58
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Dietary advice remains the cornerstone of prevention and management of type 2 diabetes (T2D). However, understanding the efficacy of dietary interventions is confounded by the challenges inherent in assessing free living diet. Here we profiled dietary metabolites to investigate glycaemic deterioration and cardiometabolic risk in people at risk of or living with T2D. Methods: We analysed data from plasma collected at baseline and 18-month follow-up in individuals from the Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) cohort 1 n = 403 individuals with normal or impaired glucose regulation (prediabetic) and cohort 2 n = 458 individuals with new onset of T2D. A dietary metabolite profile model (Tpred) was constructed using multivariable regression of 113 plasma metabolites obtained from targeted metabolomics assays. The continuous Tpred score was used to explore the relationships between diet, glycaemic deterioration and cardio-metabolic risk via multiple linear regression models. Findings: A higher Tpred score was associated with healthier diets high in wholegrain (β=3.36 g, 95% CI 0.31, 6.40 and β=2.82 g, 95% CI 0.06, 5.57) and lower energy intake (β=-75.53 kcal, 95% CI -144.71, -2.35 and β=-122.51 kcal, 95% CI -186.56, -38.46), and saturated fat (β=-0.92 g, 95% CI -1.56, -0.28 and β=–0.98 g, 95% CI -1.53, -0.42 g), respectively for cohort 1 and 2. In both cohorts a higher Tpred score was also associated with lower total body adiposity and favourable lipid profiles HDL-cholesterol (β=0.07 mmol/L, 95% CI 0.03, 0.1), (β=0.08 mmol/L, 95% CI 0.04, 0.1), and triglycerides (β=-0.1 mmol/L, 95% CI -0.2, -0.03), (β=-0.2 mmol/L, 95% CI -0.3, -0.09), respectively for cohort 1 and 2. In cohort 2, the Tpred score was negatively associated with liver fat (β=-0.74%, 95% CI -0.67, -0.81), and lower fasting concentrations of HbA1c (β=-0.9 mmol/mol, 95% CI -1.5, -0.1), glucose (β=-0.2 mmol/L, 95% CI -0.4, -0.05) and insulin (β=-11.0 pmol/mol, 95% CI -19.5, -2.6). Longitudinal analysis showed at 18-month follow up a higher Tpred score was also associated lower total body adiposity in both cohorts and lower fasting glucose (β=-0.2 mmol/L, 95% CI -0.3, -0.01) and insulin (β=-9.2 pmol/mol, 95% CI -17.9, -0.4) concentrations in cohort 2. Interpretation: Plasma dietary metabolite profiling provides objective measures of diet intake, showing a relationship to glycaemic deterioration and cardiometabolic health. Funding: This work was supported by the Innovative Medicines Initiative Joint Undertaking under grant agreement no. 115,317 (DIRECT), resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007–2013) and EFPIA companies.
  •  
14.
  • Grøntved, Anders, et al. (författare)
  • Bicycling to Work and Primordial Prevention of Cardiovascular Risk : A Cohort Study Among Swedish Men and Women
  • 2016
  • Ingår i: Journal of the American Heart Association. - : Wiley-Blackwell. - 2047-9980. ; 5:11
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Bicycling to work may be a viable approach for achieving physical activity that provides cardiovascular health benefits. In this study we investigated the relationship of bicycling to work with incidence of obesity, hypertension, hypertriglyceridemia, and impaired glucose tolerance across a decade of follow-up in middle-aged men and women.METHODS AND RESULTS: We followed 23 732 Swedish men and women with a mean age of 43.5 years at baseline who attended a health examination twice during a 10-year period (1990-2011). In multivariable adjusted models we calculated the odds of incident obesity, hypertension, hypertriglyceridemia, and impaired glucose tolerance, comparing individuals who commuted to work by bicycle with those who used passive modes of transportation. We also examined the relationship of change in commuting mode with incidence of these clinical risk factors. Cycling to work at baseline was associated with lower odds of incident obesity (odds ratio [OR]=0.85, 95% CI 0.73-0.99), hypertension (OR=0.87, 95% CI 0.79-0.95), hypertriglyceridemia (OR=0.85, 95% CI 0.76-0.94), and impaired glucose tolerance (OR=0.88, 95% CI 0.80-0.96) compared with passive travel after adjusting for putative confounding factors. Participants who maintained or began bicycling to work during follow-up had lower odds of obesity (OR=0.61, 95% CI 0.50-0.73), hypertension (OR=0.89, 95% CI 0.80-0.98), hypertriglyceridemia (OR=0.80, 95% CI 0.70-0.90), and impaired glucose tolerance (OR=0.82, 95% CI 0.74-0.91) compared with participants not cycling to work at both times points or who switched from cycling to other modes of transport during follow-up.CONCLUSIONS: These data suggest that commuting by bicycle to work is an important strategy for primordial prevention of clinical cardiovascular risk factors among middle-aged men and women.
  •  
15.
  • Gudmundsdottir, Valborg, et al. (författare)
  • Whole blood co-expression modules associate with metabolic traits and type 2 diabetes : an IMI-DIRECT study
  • 2020
  • Ingår i: Genome Medicine. - : BioMed Central. - 1756-994X. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The rising prevalence of type 2 diabetes (T2D) poses a major global challenge. It remains unresolved to what extent transcriptomic signatures of metabolic dysregulation and T2D can be observed in easily accessible tissues such as blood. Additionally, large-scale human studies are required to further our understanding of the putative inflammatory component of insulin resistance and T2D. Here we used transcriptomics data from individuals with (n = 789) and without (n = 2127) T2D from the IMI-DIRECT cohorts to describe the co-expression structure of whole blood that mainly reflects processes and cell types of the immune system, and how it relates to metabolically relevant clinical traits and T2D.Methods: Clusters of co-expressed genes were identified in the non-diabetic IMI-DIRECT cohort and evaluated with regard to stability, as well as preservation and rewiring in the cohort of individuals with T2D. We performed functional and immune cell signature enrichment analyses, and a genome-wide association study to describe the genetic regulation of the modules. Phenotypic and trans-omics associations of the transcriptomic modules were investigated across both IMI-DIRECT cohorts.Results: We identified 55 whole blood co-expression modules, some of which clustered in larger super-modules. We identified a large number of associations between these transcriptomic modules and measures of insulin action and glucose tolerance. Some of the metabolically linked modules reflect neutrophil-lymphocyte ratio in blood while others are independent of white blood cell estimates, including a module of genes encoding neutrophil granule proteins with antibacterial properties for which the strongest associations with clinical traits and T2D status were observed. Through the integration of genetic and multi-omics data, we provide a holistic view of the regulation and molecular context of whole blood transcriptomic modules. We furthermore identified an overlap between genetic signals for T2D and co-expression modules involved in type II interferon signaling.Conclusions: Our results offer a large-scale map of whole blood transcriptomic modules in the context of metabolic disease and point to novel biological candidates for future studies related to T2D.
  •  
16.
  • Koivula, Robert W., et al. (författare)
  • The role of physical activity in metabolic homeostasis before and after the onset of type 2 diabetes : an IMI DIRECT study
  • 2020
  • Ingår i: Diabetologia. - : Springer Nature. - 0012-186X .- 1432-0428. ; 63:4, s. 744-756
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: It is well established that physical activity, abdominal ectopic fat and glycaemic regulation are related but the underlying structure of these relationships is unclear. The previously proposed twin-cycle hypothesis (TC) provides a mechanistic basis for impairment in glycaemic control through the interactions of substrate availability, substrate metabolism and abdominal ectopic fat accumulation. Here, we hypothesise that the effect of physical activity in glucose regulation is mediated by the twin-cycle. We aimed to examine this notion in the Innovative Medicines Initiative Diabetes Research on Patient Stratification (IMI DIRECT) Consortium cohorts comprised of participants with normal or impaired glucose regulation (cohort 1: N ≤ 920) or with recently diagnosed type 2 diabetes (cohort 2: N ≤ 435). Methods: We defined a structural equation model that describes the TC and fitted this within the IMI DIRECT dataset. A second model, twin-cycle plus physical activity (TC-PA), to assess the extent to which the effects of physical activity in glycaemic regulation are mediated by components in the twin-cycle, was also fitted. Beta cell function, insulin sensitivity and glycaemic control were modelled from frequently sampled 75 g OGTTs (fsOGTTs) and mixed-meal tolerance tests (MMTTs) in participants without and with diabetes, respectively. Abdominal fat distribution was assessed using MRI, and physical activity through wrist-worn triaxial accelerometry. Results are presented as standardised beta coefficients, SE and p values, respectively. Results: The TC and TC-PA models showed better fit than null models (TC: χ2 = 242, p = 0.004 and χ2 = 63, p = 0.001 in cohort 1 and 2, respectively; TC-PA: χ2 = 180, p = 0.041 and χ2 = 60, p = 0.008 in cohort 1 and 2, respectively). The association of physical activity with glycaemic control was primarily mediated by variables in the liver fat cycle. Conclusions/interpretation: These analyses partially support the mechanisms proposed in the twin-cycle model and highlight mechanistic pathways through which insulin sensitivity and liver fat mediate the association between physical activity and glycaemic control.
  •  
17.
  • Ahmad, Abrar, et al. (författare)
  • Precision Prognostics for Cardiovascular Disease in Type 2 Diabetes : A Systematic Review and Meta-analysis
  • 2023
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • BACKGROUND: Precision medicine has the potential to improve cardiovascular disease (CVD) risk prediction in individuals with type 2 diabetes (T2D).METHODS: We conducted a systematic review and meta-analysis of longitudinal studies to identify potentially novel prognostic factors that could improve CVD risk prediction in T2D. Out of 9380 studies identified, 416 studies met inclusion criteria. Outcomes were reported for 321 biomarker studies, 48 genetic marker studies, and 47 risk score/model studies.Out of all evaluated biomarkers, only 13 showed improvement in prediction performance. Results of pooled meta-analyses, non-pooled analyses, and assessments of improvement in prediction performance and risk of bias, yielded the highest predictive utility for N-terminal pro b-type natriuretic peptide (NT-proBNP) (high-evidence), troponin-T (TnT) (moderate-evidence), triglyceride-glucose (TyG) index (moderate-evidence), Genetic Risk Score for Coronary Heart Disease (GRS-CHD) (moderate-evidence); moderate predictive utility for coronary computed tomography angiography (low-evidence), single-photon emission computed tomography (low-evidence), pulse wave velocity (moderate-evidence); and low predictive utility for C-reactive protein (moderate-evidence), coronary artery calcium score (low-evidence), galectin-3 (low-evidence), troponin-I (low-evidence), carotid plaque (low-evidence), and growth differentiation factor-15 (low-evidence). Risk scores showed modest discrimination on internal validation, with lower performance on external validation.CONCLUSIONS: Despite high interest in this topic, very few studies conducted rigorous analyses to demonstrate incremental predictive utility beyond established CVD risk factors for T2D. The most promising markers identified were NT-proBNP, TnT, TyG and GRS-CHD, with the highest strength of evidence for NT-proBNP. Further research is needed to determine their clinical utility in risk stratification and management of CVD in T2D.PLAIN LANGUAGE SUMMARY: Patients with T2D are at high risk for CVD but predicting who will experience a cardiac event is challenging. Current risk tools and prognostic factors, such as laboratory tests, may not accurately predict risk in different patient populations. There is a need for personalized risk prediction tools to identify patients more accurately so that CVD prevention can be targeted to those who need it most. This study examined novel biomarkers, genetic markers, and risk scores on the prediction of CVD in individuals with T2D. We found that four laboratory markers and a genetic risk score for CHD had high predictive utility beyond traditional CVD risk factors and that risk scores had modest predictive utility when tested in diverse populations, but more studies are needed to determine their usefulness in clinical practice. The highest strength of evidence was observed for NT-proBNP, a laboratory test currently used to monitor patients with heart failure but not currently used in clinical practice for the purpose of CVD prediction in T2D.
  •  
18.
  • Ahmad, Abrar, et al. (författare)
  • Precision prognostics for cardiovascular disease in Type 2 diabetes : a systematic review and meta-analysis
  • 2024
  • Ingår i: Communications medicine. - 2730-664X. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Precision medicine has the potential to improve cardiovascular disease (CVD) risk prediction in individuals with Type 2 diabetes (T2D).METHODS: We conducted a systematic review and meta-analysis of longitudinal studies to identify potentially novel prognostic factors that may improve CVD risk prediction in T2D. Out of 9380 studies identified, 416 studies met inclusion criteria. Outcomes were reported for 321 biomarker studies, 48 genetic marker studies, and 47 risk score/model studies.RESULTS: Out of all evaluated biomarkers, only 13 showed improvement in prediction performance. Results of pooled meta-analyses, non-pooled analyses, and assessments of improvement in prediction performance and risk of bias, yielded the highest predictive utility for N-terminal pro b-type natriuretic peptide (NT-proBNP) (high-evidence), troponin-T (TnT) (moderate-evidence), triglyceride-glucose (TyG) index (moderate-evidence), Genetic Risk Score for Coronary Heart Disease (GRS-CHD) (moderate-evidence); moderate predictive utility for coronary computed tomography angiography (low-evidence), single-photon emission computed tomography (low-evidence), pulse wave velocity (moderate-evidence); and low predictive utility for C-reactive protein (moderate-evidence), coronary artery calcium score (low-evidence), galectin-3 (low-evidence), troponin-I (low-evidence), carotid plaque (low-evidence), and growth differentiation factor-15 (low-evidence). Risk scores showed modest discrimination, with lower performance in populations different from the original development cohort.CONCLUSIONS: Despite high interest in this topic, very few studies conducted rigorous analyses to demonstrate incremental predictive utility beyond established CVD risk factors for T2D. The most promising markers identified were NT-proBNP, TnT, TyG and GRS-CHD, with the highest strength of evidence for NT-proBNP. Further research is needed to determine their clinical utility in risk stratification and management of CVD in T2D.
  •  
19.
  • Allesøe, Rosa Lundbye, et al. (författare)
  • Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models
  • 2023
  • Ingår i: Nature Biotechnology. - : Springer Nature. - 1087-0156 .- 1546-1696. ; 41:3, s. 399-408
  • Tidskriftsartikel (refereegranskat)abstract
    • The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug–omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug–drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities.
  •  
20.
  • Koivula, Robert, et al. (författare)
  • Discovery of biomarkers for glycaemic deterioration before and after the onset of type 2 diabetes : rationale and design of the epidemiological studies within the IMI DIRECT Consortium
  • 2014
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 57:6, s. 1132-1142
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS:The DIRECT (Diabetes Research on Patient Stratification) Study is part of a European Union Framework 7 Innovative Medicines Initiative project, a joint undertaking between four industry and 21 academic partners throughout Europe. The Consortium aims to discover and validate biomarkers that: (1) predict the rate of glycaemic deterioration before and after type 2 diabetes onset; (2) predict the response to diabetes therapies; and (3) help stratify type 2 diabetes into clearly definable disease subclasses that can be treated more effectively than without stratification. This paper describes two new prospective cohort studies conducted as part of DIRECT.METHODS:Prediabetic participants (target sample size 2,200-2,700) and patients with newly diagnosed type 2 diabetes (target sample size ~1,000) are undergoing detailed metabolic phenotyping at baseline and 18 months and 36 months later. Abdominal, pancreatic and liver fat is assessed using MRI. Insulin secretion and action are assessed using frequently sampled OGTTs in non-diabetic participants, and frequently sampled mixed-meal tolerance tests in patients with type 2 diabetes. Biosamples include venous blood, faeces, urine and nail clippings, which, among other biochemical analyses, will be characterised at genetic, transcriptomic, metabolomic, proteomic and metagenomic levels. Lifestyle is assessed using high-resolution triaxial accelerometry, 24 h diet record, and food habit questionnaires.CONCLUSIONS/INTERPRETATION:DIRECT will yield an unprecedented array of biomaterials and data. This resource, available through managed access to scientists within and outside the Consortium, will facilitate the development of new treatments and therapeutic strategies for the prevention and management of type 2 diabetes
  •  
21.
  • Mazidi, Mohsen, et al. (författare)
  • Meal-induced inflammation : postprandial insights from the Personalised REsponses to DIetary Composition Trial (PREDICT) study in 1000 participants
  • 2021
  • Ingår i: The American journal of clinical nutrition. - : Elsevier BV. - 1938-3207 .- 0002-9165. ; 114:3, s. 1028-1038
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Meal-induced metabolic changes trigger an acute inflammatory response, contributing to chronic inflammation and associated diseases. OBJECTIVES: We aimed to characterize variability in postprandial inflammatory responses using traditional (IL-6) and novel [glycoprotein acetylation (GlycA)] biomarkers of inflammation and dissect their biological determinants with a focus on postprandial glycemia and lipemia. METHODS: Postprandial (0-6 h) glucose, triglyceride (TG), IL-6, and GlycA responses were measured at multiple intervals after sequential mixed-nutrient meals (0 h and 4 h) in 1002 healthy adults aged 18-65 y from the PREDICT (Personalised REsponses to DIetary Composition Trial) 1 study, a single-arm dietary intervention study. Measures of habitual diet, blood biochemistry, gut microbiome composition, and visceral fat mass (VFM) were also collected. RESULTS: The postprandial changes in GlycA and IL-6 concentrations were highly variable between individuals. Participants eliciting an increase in GlycA and IL-6 (60% and 94% of the total participants, respectively) had mean 6-h increases of 11% and 190%, respectively. Peak postprandial TG and glucose concentrations were significantly associated with 6-h GlycA (r = 0.83 and r = 0.24, respectively; both P < 0.001) but not with 6-h IL-6 (both P > 0.26). A random forest model revealed the maximum TG concentration was the strongest postprandial TG predictor of postprandial GlycA and structural equation modeling revealed that VFM and fasting TG were most strongly associated with fasting and postprandial GlycA. Network Mendelian randomization demonstrated a causal link between VFM and fasting GlycA, mediated (28%) by fasting TG. Individuals eliciting enhanced GlycA responses had higher predicted cardiovascular disease risk (using the atherosclerotic disease risk score) than the rest of the cohort. CONCLUSIONS: The variable postprandial increases in GlycA and their associations with TG metabolism highlight the importance of modulating TG in concert with obesity to reduce GlycA and associated low-grade inflammation-related diseases.This trial was registered at clinicaltrials.gov as NCT03479866.
  •  
22.
  • Pieri, Kyriaki, et al. (författare)
  • Polygenic risk in Type III hyperlipidaemia and risk of cardiovascular disease : An epidemiological study in UK Biobank and Oxford Biobank
  • 2023
  • Ingår i: International Journal of Cardiology. - : Elsevier BV. - 0167-5273. ; 373, s. 72-78
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Type III hyperlipidaemia (T3HL) is characterised by equimolar increases in plasma triglycerides (TG) and cholesterol in <10% of APOE22 carriers conveying high cardiovascular disease (CVD) risk. We investigate the role of a weighted triglyceride-raising polygenic score (TG.PS) precipitating T3HL. Methods: The TG.PS (restricted to genome-wide significance and weighted by published independent effect estimates) was applied to the Oxford Biobank (OBB, n = 6952) and the UK Biobank (UKB, n = 460,037), to analyse effects on plasma lipid phenotypes. Fasting plasma lipid, lipoprotein biochemistry and NMR lipoprotein profiles were analysed in OBB. CVD prevalence/incidence was examined in UKB. Results: One TG.PS standard-deviation (SD) was associated with 13.0% (95% confidence-interval 12.0–14.0%) greater TG in OBB and 15.2% (15.0–15.4%) in UKB. APOE22 carriers had 19.0% (1.0–39.0%) greater TG in UKB. Males were more susceptible to TG.PS effects (4.0% (2.0–6.0%) greater TG with 1 TG.PS SD in OBB, 1.6% (1.3–1.9%) in UKB) than females. There was no interaction between APOE22 and TG.PS, BMI, sex or age on TG. APOE22 carriers had lower apolipoprotein B (apoB) (OBB; −0.35 (−0.29 to −0.40)g/L, UKB; −0.41 (−0.405 to −0.42)g/L). NMR lipoprotein lipid concentrations were discordant to conventional biochemistry in APOE22 carriers. In APOE22 compared with APOE33, CVD was no more prevalent in similarly hypertriglyceridaemic participants (OR 0.97 95%CI 0.76–1.25), but was less prevalent in normolipidaemia (OR 0.81, 95%CI 0.69–0.95); no differences were observed in CVD incidence. Conclusions: TG.PS confers an additive risk for developing T3HL, that is of comparable effect size to conventional risk factors. The protective effect of APOE22 for prevalent CVD is consistent with lower apoB in APOE22 carriers.
  •  
23.
  • Poveda, Alaitz, et al. (författare)
  • Innate biology versus lifestyle behaviour in the aetiology of obesity and type 2 diabetes : the GLACIER Study
  • 2016
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 59:3, s. 462-471
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis We compared the ability of genetic (established type 2 diabetes, fasting glucose, 2 h glucose and obesity variants) and modifiable lifestyle (diet, physical activity, smoking, alcohol and education) risk factors to predict incident type 2 diabetes and obesity in a population-based prospective cohort of 3,444 Swedish adults studied sequentially at baseline and 10 years later. Methods Multivariable logistic regression analyses were used to assess the predictive ability of genetic and lifestyle risk factors on incident obesity and type 2 diabetes by calculating the AUC. Results The predictive accuracy of lifestyle risk factors was similar to that yielded by genetic information for incident type 2 diabetes (AUC 75% and 74%, respectively) and obesity (AUC 68% and 73%, respectively) in models adjusted for age, age2 and sex. The addition of genetic information to the lifestyle model significantly improved the prediction of type 2 diabetes (AUC 80%; p = 0.0003) and obesity (AUC 79%; p < 0.0001) and resulted in a net reclassification improvement of 58% for type 2 diabetes and 64% for obesity. Conclusions/interpretation These findings illustrate that lifestyle and genetic information separately provide a similarly high degree of long-range predictive accuracy for obesity and type 2 diabetes.
  •  
24.
  • Preiss, David, et al. (författare)
  • Sustained influence of metformin therapy on circulating glucagon-like peptide-1 levels in individuals with and without type 2 diabetes
  • 2017
  • Ingår i: Diabetes, Obesity and Metabolism. - : Wiley. - 1462-8902. ; 19:3, s. 356-363
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: To investigate, in the Carotid Atherosclerosis: Metformin for Insulin Resistance (CAMERA) trial (NCT00723307), whether the influence of metformin on the glucagon-like peptide (GLP)-1 axis in individuals with and without type 2 diabetes (T2DM) is sustained and related to changes in glycaemia or weight, and to investigate basal and post-meal GLP-1 levels in patients with T2DM in the cross-sectional Diabetes Research on Patient Stratification (DIRECT) study. Materials and methods: CAMERA was a double-blind randomized placebo-controlled trial of metformin in 173 participants without diabetes. Using 6-monthly fasted total GLP-1 levels over 18months, we evaluated metformin's effect on total GLP-1 with repeated-measures analysis and analysis of covariance. In the DIRECT study, we examined active and total fasting and 60-minute post-meal GLP-1 levels in 775 people recently diagnosed with T2DM treated with metformin or diet, using Student's t-tests and linear regression. Results: In CAMERA, metformin increased total GLP-1 at 6 (+20.7%, 95% confidence interval [CI] 4.7-39.0), 12 (+26.7%, 95% CI 10.3-45.6) and 18months (+18.7%, 95% CI 3.8-35.7), an overall increase of 23.4% (95% CI 11.2-36.9; P <.0001) vs placebo. Adjustment for changes in glycaemia and adiposity, individually or combined, did not attenuate this effect. In the DIRECT study, metformin was associated with higher fasting active (39.1%, 95% CI 21.3-56.4) and total GLP-1 (14.1%, 95% CI 1.2-25.9) but not post-meal incremental GLP-1. These changes were independent of potential confounders including age, sex, adiposity and glycated haemoglobin. Conclusions: In people without diabetes, metformin increases total GLP-1 in a sustained manner and independently of changes in weight or glycaemia. Metformin-treated patients with T2DM also have higher fasted GLP-1 levels, independently of weight and glycaemia.
  •  
25.
  • Renström, Frida, et al. (författare)
  • Season-dependent associations of circadian rhythm-regulating loci (CRY1, CRY2 and MTNR1B) and glucose homeostasis : the GLACIER Study
  • 2015
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 58:5, s. 997-1005
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis The association of single nucleotide polymorphisms (SNPs) proximal to CRY2 and MTNR1B with fasting glucose is well established. CRY1/2 and MTNR1B encode proteins that regulate circadian rhythmicity and influence energy metabolism. Here we tested whether season modified the relationship of these loci with blood glucose concentration. Methods SNPs rs8192440 (CRY1), rs11605924 (CRY2) and rs10830963 (MTNR1B) were genotyped in a prospective cohort study from northern Sweden (n = 16,499). The number of hours of daylight exposure during the year ranged from 4.5 to 22 h daily. Owing to the non-linear distribution of daylight throughout the year, season was dichotomised based on the vernal and autumnal equinoxes. Effect modification was assessed using linear regression models fitted with a SNP x season interaction term, marginal effect terms and putative confounding variables, with fasting or 2 h glucose concentrations as outcomes. Results The rs8192440 (CRY1) variant was only associated with fasting glucose among participants (n = 2,318) examined during the light season (beta = -0.04 mmol/l per A allele, 95% CI -0.08, -0.01, p = 0.02, p (interaction) = 0.01). In addition to the established association with fasting glucose, the rs11605924 (CRY2) and rs10830963 (MTNR1B) loci were associated with 2 h glucose concentrations (beta = 0.07 mmol/l per A allele, 95% CI 0.03, 0.12, p = 0.0008, n = 9,605, and beta = -0.11 mmol/l per G allele, 95% CI -0.15, -0.06, p < 0.0001, n = 9,517, respectively), but only in participants examined during the dark season (p (interaction) = 0.006 and 0.04, respectively). Repeated measures analyses including data collected 10 years after baseline (n = 3,500) confirmed the results for the CRY1 locus (p (interaction) = 0.01). Conclusions/interpretation In summary, these observations suggest a biologically plausible season-dependent association between SNPs at CRY1, CRY2 and MTNR1B and glucose homeostasis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 26
Typ av publikation
tidskriftsartikel (23)
annan publikation (2)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (24)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Franks, Paul W. (18)
Koivula, Robert W (14)
Pedersen, Oluf (12)
Hansen, Torben (12)
McCarthy, Mark I (11)
Mari, Andrea (10)
visa fler...
Mahajan, Anubha (10)
Schwenk, Jochen M. (9)
Koivula, Robert (9)
Vinuela, Ana (9)
De Masi, Federico (9)
Laakso, Markku (8)
Giordano, Giuseppe N ... (7)
Ridderstråle, Martin (7)
Kurbasic, Azra (6)
Allin, Kristine H (5)
Frost, Gary (5)
Hallmans, Göran (4)
Brage, Soren (4)
Bell, Jimmy D. (4)
Thomas, E. Louise (4)
Hattersley, Andrew T (4)
Gomez, Maria F (3)
Linneberg, Allan (3)
Grarup, Niels (3)
Ahmad, Abrar (3)
Lim, Lee-Ling (3)
Morieri, Mario Luca (3)
Tam, Claudia Ha-Ting (3)
Cheng, Feifei (3)
Chikowore, Tinashe (3)
Dudenhöffer-Pfeifer, ... (3)
Fitipaldi, Hugo (3)
Huang, Chuiguo (3)
Kanbour, Sarah (3)
Sarkar, Sudipa (3)
Motala, Ayesha A (3)
Tye, Sok Cin (3)
Yu, Gechang (3)
Zhang, Yingchai (3)
Provenzano, Michele (3)
Sherifali, Diana (3)
Ma, Ronald C W (3)
Mathioudakis, Nestor ... (3)
Renström, Frida (3)
Tajes, Juan Fernande ... (3)
Sharma, Sapna (3)
Haid, Mark (3)
Musholt, Petra B. (3)
Jones, Angus (3)
visa färre...
Lärosäte
Lunds universitet (23)
Umeå universitet (11)
Kungliga Tekniska Högskolan (8)
Uppsala universitet (2)
Göteborgs universitet (1)
Stockholms universitet (1)
visa fler...
Linnéuniversitetet (1)
Karolinska Institutet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (26)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (25)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy