SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kolb Ute) "

Sökning: WFRF:(Kolb Ute)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gemmi, Mauro, et al. (författare)
  • 3D Electron Diffraction : The Nanocrystallography Revolution
  • 2019
  • Ingår i: ACS central science. - : American Chemical Society (ACS). - 2374-7943 .- 2374-7951. ; 5:8, s. 1315-1329
  • Tidskriftsartikel (refereegranskat)abstract
    • Crystallography of nanocrystalline materials has witnessed a true revolution in the past 10 years, thanks to the introduction of protocols for 3D acquisition and analysis of electron diffraction data. This method provides single-crystal data of structure solution and refinement quality, allowing the atomic structure determination of those materials that remained hitherto unknown because of their limited crystallinity. Several experimental protocols exist, which share the common idea of sampling a sequence of diffraction patterns while the crystal is tilted around a noncrystallographic axis, namely, the goniometer axis of the transmission electron microscope sample stage. This Outlook reviews most important 3D electron diffraction applications for different kinds of samples and problematics, related with both materials and life sciences. Structure refinement including dynamical scattering is also briefly discussed.
  •  
2.
  • Hudson, Lawrence N, et al. (författare)
  • The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project
  • 2017
  • Ingår i: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 7:1, s. 145-188
  • Tidskriftsartikel (refereegranskat)abstract
    • The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
  •  
3.
  • Klein, Andreas, et al. (författare)
  • The Fermi energy as common parameter to describe charge compensation mechanisms: A path to Fermi level engineering of oxide electroceramics
  • 2023
  • Ingår i: Journal of Electroceramics. - 1573-8663 .- 1385-3449. ; 51
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemical substitution, which can be iso- or heterovalent, is the primary strategy to tailor material properties. There are various ways how a material can react to substitution. Isovalent substitution changes the density of states while heterovalent substitution, i.e. doping, can induce electronic compensation, ionic compensation, valence changes of cations or anions, or result in the segregation or neutralization of the dopant. While all these can, in principle, occur simultaneously, it is often desirable to select a certain mechanism in order to determine material properties. Being able to predict and control the individual compensation mechanism should therefore be a key target of materials science. This contribution outlines the perspective that this could be achieved by taking the Fermi energy as a common descriptor for the different compensation mechanisms. This generalization becomes possible since the formation enthalpies of the defects involved in the various compensation mechanisms do all depend on the Fermi energy. In order to control material properties, it is then necessary to adjust the formation enthalpies and charge transition levels of the involved defects. Understanding how these depend on material composition will open up a new path for the design of materials by Fermi level engineering.
  •  
4.
  • Maslyk, Marcel, et al. (författare)
  • Understanding the Stability and Recrystallization Behavior of Amorphous Zinc Phosphate
  • 2021
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 125:4, s. 2636-2647
  • Tidskriftsartikel (refereegranskat)abstract
    • Zinc phosphate, an important pigment in phosphate conversion coatings, forms protective films on rubbing surfaces. We have simulated the underlying reactions under shear by ball-milling zinc phosphate and monitored the reaction of hopeite (Zn3(PO4)2·4H2O) and the retarded recrystallization of the amorphous reaction product by powder X-ray diffraction (PXRD) and quantitative infrared (IR) spectroscopy. Abrasion of stainless steel was simulated by addition of pure 57Fe. The results provide insight into the chemistry of phosphate conversion coatings or during battery cycling of metal phosphates and give theoretical guidance for the preparation of amorphous phosphates. Thermal analysis revealed that the release of structural water is a key step during the reaction of hopeite under shear to ball-milled amorphous zinc phosphate. The back-reaction and associated recrystallization kinetics of amorphous zinc phosphate show a classical Langmuir behavior. Fe impurities inhibit the recrystallization of ball-milled amorphous zinc phosphate strongly. 57Fe Mössbauer spectroscopy and PXRD revealed that Fe is oxidized to Fe2+ and Fe3+ during ball-milling and incorporated locally at the tetrahedral and octahedral sites of the structure. Ball-milled amorphous zinc phosphate is metastable as γ-Zn3–xFex(PO4)2. EPR studies showed the incorporation of Fe3+ to be coupled with the formation of Zn2+ vacancies. The Fe3+ defect sites bind water because of their higher Pearson hardness (compared to Fe2+ and Zn2+), thereby reducing water mobility and inhibiting further reactions like the recrystallization to hopeite. Our findings reveal the amorphization mechanism of Zn3(PO4)2·4H2O in stainless steel ball mills at the atomic scale and highlight how the reactivity of amorphous products is affected by impurities associated with the processing method.
  •  
5.
  • Peng, Fei, 1987- (författare)
  • Structure determination of beam sensitive crystals by rotation electron diffraction : the impact of sample cooling
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Electron crystallography is complementary to X-ray crystallography. Single crystal X-ray diffraction requires the size of a crystal to be larger than about 5 × 5 × 5 μm3 while a TEM allows a million times smaller crystals being studied. This advantage of electron crystallography has been used to solve new structures of small crystals. One method which has been used to collect electron diffraction data is rotation electron diffraction (RED) developed at Stockholm University. The RED method combines the goniometer tilt and beam tilt in a TEM to achieve 3D electron diffraction data. Using a high angle tilt sample holder, RED data can be collected to cover a tilt range of up to 140o. Here the crystal structures of several different compounds have been determined using RED. The structure of needle-like crystals on the surface of NiMH particles was solved as La(OH)2. A structure model of metal-organic layers has been built based on RED data. A 3D MOF structure was solved from RED data. Two halide perovskite structures and two newly synthesized aluminophosphate structures were solved. For those beam sensitive crystals characterized here, sample cooling down to -170oC was used to reduce the beam damage. The low temperature not only reduces electron beam damage, but also keeps the structure more stable in the high vacuum in a TEM and improves the quality of the diffraction data. It is shown that cooling can improve the resolution of diffraction data for MOFs and zeolites, for samples undergoing phase changes at low temperature, the data quality could be worse by cooling. In summary, cooling can improve the ED data quality as long as the low temperature does not trigger structural changes. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
Typ av publikation
tidskriftsartikel (4)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (4)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Hylander, Kristoffer (1)
Zou, Xiaodong, Profe ... (1)
Granjon, Laurent (1)
Shylin, Sergii I. (1)
Abrahams, Jan Pieter (1)
Abrahamczyk, Stefan (1)
visa fler...
Jonsell, Mats (1)
Brunet, Jörg (1)
Kolb, Annette (1)
Sáfián, Szabolcs (1)
Persson, Anna S. (1)
Franzén, Markus (1)
Jung, Martin (1)
Nilsson, Sven G (1)
Berg, Åke (1)
Entling, Martin H. (1)
Goulson, Dave (1)
Herzog, Felix (1)
Knop, Eva (1)
Tscharntke, Teja (1)
Aizen, Marcelo A. (1)
Petanidou, Theodora (1)
Stout, Jane C. (1)
Woodcock, Ben A. (1)
Poveda, Katja (1)
Alignier, Audrey (1)
Batáry, Péter (1)
Krauss, Jochen (1)
Steffan-Dewenter, In ... (1)
Westphal, Catrin (1)
Wolters, Volkmar (1)
Edenius, Lars (1)
Rader, Romina (1)
Hovmöller, Sven (1)
Medina, Nagore G. (1)
Baeten, Lander (1)
Dynesius, Mats (1)
de Sassi, Claudio (1)
Luskin, Matthew S. (1)
Slade, Eleanor M. (1)
Mikusinski, Grzegorz (1)
Gilbert, Benjamin (1)
Felton, Annika (1)
Samnegård, Ulrika (1)
Barlow, Jos (1)
Klein, Andreas (1)
Ficetola, Gentile F. (1)
Yu, Douglas W. (1)
Schweiger, Oliver (1)
Sadler, Jonathan P. (1)
visa färre...
Lärosäte
Stockholms universitet (3)
Umeå universitet (1)
Uppsala universitet (1)
Lunds universitet (1)
Chalmers tekniska högskola (1)
Linnéuniversitetet (1)
visa fler...
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (5)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (5)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy