SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kole Merlin) "

Sökning: WFRF:(Kole Merlin)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chauvin, Maxime, et al. (författare)
  • Observation of polarized hard X-ray emission from the Crab by the PoGOLite Pathfinder
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966 .- 1745-3925 .- 1745-3933. ; 456:1, s. L84-L88
  • Tidskriftsartikel (refereegranskat)abstract
    • We have measured the linear polarization of hard X-ray emission from the Crab in a previously unexplored energy interval, 20-120 keV. The introduction of two new observational parameters, the polarization fraction and angle stands to disentangle geometrical and physical effects, thereby providing information on the pulsar wind geometry and magnetic field environment. Measurements are conducted using the PoGOLite Pathfinder - a balloon-borne polarimeter. Polarization is determined by measuring the azimuthal Compton scattering angle of incident X-rays in an array of plastic scintillators housed in an anticoincidence well. The polarimetric response has been characterized prior to flight using both polarized and unpolarized calibration sources. We address possible systematic effects through observations of a background field. The measured polarization fraction for the integrated Crab light curve is 18.4(-10.6)(+9.8) per cent, corresponding to an upper limit (99 per cent credibility) of 42.4 per cent, for a polarization angle of (149.2 +/- 16.0)degrees.
  •  
2.
  • Chauvin, Maxime, et al. (författare)
  • Optimising a balloon-borne polarimeter in the hard X-ray domain : From the PoGOLite Pathfinder to PoGO
  • 2016
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 82, s. 99-107
  • Tidskriftsartikel (refereegranskat)abstract
    • PoGOLite is a balloon-borne hard X-ray polarimeter dedicated to the study of point sources. Compton scattered events are registered using an array of plastic scintillator units to determine the polarisation of incident X-rays in the energy range 20-240 keV. In 2013, a near circumpolar balloon flight of 14 days duration was completed after launch from Esrange, Sweden, resulting in a measurement of the linear polarisation of the Crab emission. Building on the experience gained from this Pathfinder flight, the polarimeter is being modified to improve performance for a second flight in 2016. Such optimisations, based on Geant4 Monte Carlo simulations, take into account the source characteristics, the instrument response and the background environment which is dominated by atmospheric neutrons. This paper describes the optimisation of the polarimeter and details the associated increase in performance. The resulting design, PoGO+, is expected to improve the Minimum Detectable Polarisation (MDP) for the Crab from 19.8% to 11.1% for a 5 day flight. Assuming the same Crab polarisation fraction as measured during the 2013 flight, this improvement in MDP will allow a 5 sigma constrained result. It will also allow the study of the nebula emission only (Crab off-pulse) and Cygnus X-1 if in the hard state.
  •  
3.
  • Chauvin, Maxime, et al. (författare)
  • Preflight performance studies of the PoGOLite hard X-ray polarimeter
  • 2016
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 72, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Polarimetric studies of astrophysical sources can make important contributions to resolve the geometry of the emitting region and determine the photon emission mechanism. PoGOLite is a balloon-borne polarimeter operating in the hard X-ray band (25-240 key), with a Pathfinder mission focussing on Crab observations. Within the polarimeter, the distribution of Compton scattering angles is used to determine the polarisation fraction and angle of incident photons. To assure an unbiased measurement of the polarisation during a balloon flight it is crucial to characterise the performance of the instrument before the launch. This paper presents the results of the PoGOLite calibration tests and simulations performed before the 2013 balloon flight. The tests performed confirm that the polarimeter does not have any intrinsic asymmetries and therefore does not induce bias into the measurements. Generally, good agreement is found between results from test data and simulations which allows the polarimeter performance to be estimated for Crab observations.
  •  
4.
  • Chauvin, Maxime, et al. (författare)
  • The design and flight performance of the PoGOLite Pathfinder balloon-borne hard X-ray polarimeter
  • 2016
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 41:1, s. 17-41
  • Tidskriftsartikel (refereegranskat)abstract
    • In the 50 years since the advent of X-ray astronomy there have been many scientific advances due to the development of new experimental techniques for detecting and characterising X-rays. Observations of X-ray polarisation have, however, not undergone a similar development. This is a shortcoming since a plethora of open questions related to the nature of X-ray sources could be resolved through measurements of the linear polarisation of emitted X-rays. The PoGOLite Pathfinder is a balloon-borne hard X-ray polarimeter operating in the 25-240 keV energy band from a stabilised observation platform. Polarisation is determined using coincident energy deposits in a segmented array of plastic scintillators surrounded by a BGO anticoincidence system and a polyethylene neutron shield. The PoGOLite Pathfinder was launched from the SSC Esrange Space Centre in July 2013. A near-circumpolar flight was achieved with a duration of approximately two weeks. The flight performance of the Pathfinder design is discussed for the three Crab observations conducted. The signal-to-background ratio for the observations is shown to be 0.25 ±0.03 and the Minimum Detectable Polarisation (99 % C.L.) is (28.4 ±2.2) %. A strategy for the continuation of the PoGOLite programme is outlined based on experience gained during the 2013 maiden flight.
  •  
5.
  • Kole, Merlin, 1986-, et al. (författare)
  • A balloon-borne measurement of high latitude atmospheric neutrons using a licaf neutron detector
  • 2013
  • Ingår i: 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). - : IEEE conference proceedings. - 9781479905348 ; , s. 6829591-
  • Konferensbidrag (refereegranskat)abstract
    • PoGOLino is a scintillator-based neutron detector. Its main purpose is to provide data on the neutron flux in the upper stratosphere at high latitudes at thermal and nonthermal energies for the PoGOLite instrument. PoGOLite is a balloon borne hard X-ray polarimeter for which the main source of background stems from high energy neutrons. No measurements of the neutron environment for the planned flight latitude and altitude exist. Furthermore this neutron environment changes with altitude, latitude and solar activity, three variables that will vary throughout the PoGOLite flight. PoGOLino was developed to study the neutron environment and the influences from these three variables upon it. PoGOLino consists of two Europium doped Lithium Calcium Aluminium Fluoride (Eu:LiCAF) scintillators, each of which is sandwiched between 2 Bismuth Germanium Oxide (BGO) scintillating crystals, which serve to veto signals produced by gamma-rays and charged particles. This allows the neutron flux to be measured even in high radiation environments. Measurements of neutrons in two separate energy bands are achieved by placing one LiCAF detector inside a moderating polyethylene shield while the second detector remains unshielded. The PoGOLino instrument was launched on March 20th 2013 from the Esrange Space Center in Northern Sweden to an altitude of 30.9 km. A description of the detector design and read-out system is presented. A detailed set of simulations of the atmospheric neutron environment performed using both PLANETOCOSMICS and Geant4 will also be described. The comparison of the neutron flux measured during flight to predictions based on these simulations will be presented and the consequences for the PoGOLite background will be discussed.
  •  
6.
  • Kole, Merlin, et al. (författare)
  • A model of the cosmic ray induced atmospheric neutron environment
  • 2015
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 62, s. 230-240
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to optimise the design of space instruments making use of detection materials with low atomic numbers, an understanding of the atmospheric neutron environment and its dependencies on time and position is needed. To produce a simple equation based model, Monte Carlo simulations were performed to obtain the atmospheric neutron fluxes produced by charged galactic cosmic ray interactions with the atmosphere. Based on the simulation results the omnidirectional neutron environment was parametrized including dependencies on altitude, magnetic latitude and solar activity. The upward- and downward-moving component of the atmospheric neutron flux are considered separately. The energy spectra calculated using these equations were found to be in good agreement with data from a purpose built balloon-borne neutron detector, high altitude aircraft data and previously published simulation based spectra.
  •  
7.
  • Kole, Merlin, 1986- (författare)
  • Background Studies for the Balloon-Borne Hard X-ray Polarimeter PoGOLite
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The polarisation degree and angle of the X-ray flux emitted by astrophysical objects holds valuable information on the responsible emission mechanisms and on the emission environments. PoGOLite is a balloon-borne hard X-ray polarimeter designed to measure polarisation using a segmented plastic scintillator array. The instrument was launched for its first scientific, near-circumpolar, flight in July 2013 from the Esrange Space Centre in Northern Sweden. The primary observation target for this flight, the Crab, was observed during the first 2 days of flight. One of the main challenges for PoGOLite is the relatively high measurement background, predicted to be induced by atmospheric neutrons. No measurement data on the neutron environment for the flight conditions of PoGOLite is however available, making exact predictions impossible. This environment was therefore studied in detail. A Monte Carlo based model of the atmospheric neutron flux was developed. This model is capable of providing differential neutron energy spectra for all altitudes, latitudes and solar activities. The predictions of this model were found to be in good agreement both with measurement data, measured by high altitude aircraft, and with predictions by location and time specific models. The results from the model were verified with data recorded by a purpose-build balloon-borne neutron detector, PoGOLino. The PoGOLino instrument uses novel neutron sensitive LiCAF scintillators sandwiched between BGO crystals which serve as an anti-coincidence system. PoGOLino was launched from the Esrange Space Centre to an altitude of 31 km on March 20th 2013 and performed the first successful measurements of the neutron flux for the PoGOLite flight conditions. Using the developed model the background as measured by the PoGOLite mission in 2013 was studied. Monte Carlo simulations were used to confirm that the PoGOLite background during flight is dominated by neutrons. The simulated neutron induced signal rate and its variations with time were furthermore found to be in good agreement with measurements. Based on these results the implications of the background on the polarisation measurements of the Crab were studied. Lastly, based on the acquired knowledge of the background, changes to the instrument geometry for potential future flight of PoGOLite were studied along with the expected achievable improvement in performance for such flights.
  •  
8.
  • Kole, Merlin, et al. (författare)
  • Neutron background detection for a hard X-ray balloon-borne polarimeter
  • 2014
  • Ingår i: Proceedings of Science. - : Proceedings of Science (PoS).
  • Konferensbidrag (refereegranskat)abstract
    • PoGOLite is a balloon-borne hard X-ray polarimeter. It determines polarisation by measuring the azimuthal angular distribution of Compton scattered photons in a plastic scintillator array. The use of an all-plastic target yields a relatively large, low-mass detection area. The dominant source of background for these measurements has been shown, through Geant4 simulations, to originate from high energy (MeV range) atmospheric neutrons. Neutrons can pass the instrument's Bismuth Germanium Oxide (BGO) anti-coincidence shield undetected and subsequently scatter between plastic scintillator elements to produce a polarisation signature. A passive 15 cm thick polyethylene shield surrounding the polarimeter reduces the neutron induced background by an order of magnitude. The background level remains however significant, prompting the need for active monitoring of the continuously changing neutron flux. For this purpose PoGOLite makes use of a phoswich scintillator cell. The phoswich cell consists of a 5 mm thick Lithium Calcium Aluminium Fluoride (LiCAF) scintillator, used for neutron detection. The LiCAF is surrounded by a BGO anti-coincidence system. This small light weight detector can therefore be used to measure the neutron flux even in high radiation environments. This type of neutron detector was tested on a separate dedicated stratospheric balloon mission in March 2013, called PoGOLino, prior to the PoGOLite flight which took place in July 2013. Results from the test flight and implications for the measurements performed on the PoGOLite flight will be discussed.
  •  
9.
  • Kole, Merlin, et al. (författare)
  • PoGOLino : A scintillator-based balloon-borne neutron detector
  • 2015
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 770, s. 68-75
  • Tidskriftsartikel (refereegranskat)abstract
    • PoGOLino is a balloon borne scintillator-based experiment developed to study the largely unexplored high altitude neutron environment at high geomagnetic latitudes. The instrument comprises two detectors LhaL make use of LiCAF, a novel neutron sensitive scintillator, sandwiched by [GO crystals for background reduction. The experiment was launched on March 20th 2013 from the [orange Space Centre, Northern Sweden (geomagnetic latitude of 65 degrees), for a three hour flight during which the instrument Look data up loan altitude of 30.9 km. The detector design and ground calibration results are presented together with the measurement results from the balloon flight.
  •  
10.
  •  
11.
  • Pearce, Mark, et al. (författare)
  • Balloon-borne hard X-ray polarimetry with PoGOLite
  • 2012
  • Ingår i: 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC). - : IEEE. - 9781467320306 ; , s. 1885-1892
  • Konferensbidrag (refereegranskat)abstract
    • PoGOLite is a hard X-ray polarimeter operating in the 25-100 keV energy band. The instrument design is optimised for the observation of compact astrophysical sources. Observations are conducted from a stabilised stratospheric balloon platform at an altitude of approximately 40 km. The primary targets for first balloon flights of a reduced effective area instrument are the Crab and Cygnus-X1. The polarisation of incoming photons is determined using coincident Compton scattering and photo-absorption events reconstructed in an array of plastic scintillator detector cells surrounded by a bismuth germanate oxide (BGO) side anticoincidence shield and a polyethylene neutron shield. A custom attitude control system keeps the polarimeter field-of-view aligned to targets of interest, compensating for sidereal motion and perturbations such as torsional forces in the balloon rigging. An overview of the PoGOLite project is presented and the outcome of the ill-fated maiden balloon flight is discussed.
  •  
12.
  • Takahashi, H., et al. (författare)
  • A thermal-neutron detector with a phoswich system of LiCaAlF6 and BGO crystal scintillators onboard PoGOLite
  • 2010
  • Ingår i: 2010 IEEE Nuclear Science Symposium, Medical Imaging Conference, NSS/MIC 2010 and 17th International Workshop on Room-Temperature Semiconductor X-ray and Gamma-ray Detectors, RTSD 2010. ; , s. 32-37
  • Konferensbidrag (refereegranskat)abstract
    • To measure the flux of atmospheric neutrons and study the neutron contribution to the background of the main detector of the PoGOLite (Polarized Gamma-ray Observer) balloon-borne experiment, a thermal-neutron detector with a phoswich system of LiCaAlF6 (Eu) and BGO crystal scintillators is developed. The performance to separate thermal-neutron events from those of gamma-rays and charged particles is validated with 252Cf on ground. The detector is attached to the PoGOLite instrument and is launched in 2011 from the Esrange facility in the North of Sweden. Although the emission wavelength of the LiCaAlF6 (Ce) is 300 nm and overlaps with the absorption wavelength of the BGO, the phoswich capability of the LiCaAlF6 (Ce) with the BGO is also confirmed with installing a waveform shifter.
  •  
13.
  • Takahashi, Hiromitsu, et al. (författare)
  • Data acquisition system and ground calibration of polarized gamma-ray observer (PoGOLite)
  • 2014
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE - International Society for Optical Engineering. - 9780819496126
  • Konferensbidrag (refereegranskat)abstract
    • The Polarized Gamma-ray Observer, PoGOLite, is a balloon experiment with the capability of detecting 10% polarization from a 200 mCrab celestial object between the energy-range 25-80 keV in one 6 hour flight. Polarization measurements in soft gamma-rays are expected to provide a powerful probe into high-energy emission mechanisms in/around neutron stars, black holes, supernova remnants, active-galactic nuclei etc. The pathfinder flight was performed in July 2013 for 14 days from Sweden to Russia. The polarization is measured using Compton scattering and photoelectric absorption in an array of 61 well-type phoswich detector cells (PDCs) for the pathfinder instrument. The PDCs are surrounded by 30 BGO crystals which form a side anti-coincidence shield (SAS) and passive polyethylene neutron shield. There is a neutron detector consisting of LiCaAlF6 (LiCAF) scintillator covered with BGOs to measure the background contribution of atmospheric neutrons. The data acquisition system treats 92 PMT signals from 61 PDCs + 30 SASs + 1 neutron detector, and it is developed based on SpaceWire spacecraft communication network. Most of the signal processing is done by digital circuits in Field Programmable Gate Arrays (FPGAs). This enables the reduction of the mass, the space and the power consumption. The performance was calibrated before the launch.
  •  
14.
  • Aad, G, et al. (författare)
  • 2015
  • swepub:Mat__t
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy