SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kooijman Ellen) "

Search: WFRF:(Kooijman Ellen)

  • Result 1-25 of 56
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Anand, Rajagopal, et al. (author)
  • Neoarchean crustal growth by accretionary processes: Evidence from combined zircon–titanite U–Pb isotope studies on granitoid rocks around the Hutti greenstone belt, eastern Dharwar Craton, India
  • 2014
  • In: Journal of Asian Earth Sciences. - : Elsevier. - 1367-9120 .- 1878-5786. ; 79, s. 72-85
  • Journal article (peer-reviewed)abstract
    • The Neoarchean Hutti greenstone belt hosts mesothermal gold deposits and is surrounded by granitoid rocks on all sides. Combined U–Pb dating of zircon and titanite from the granitoid rocks constrains their emplacement history and subsequent geologic evolution. The Golapalli and Yelagatti granodiorites occurring to the north of the Hutti greenstone belt were emplaced at 2569 ± 17 Ma. The Yelagatti granodiorite yielded a younger titanite age of 2530 ± 6 Ma which indicates that it was affected by a post-crystallization thermal event that exceeded the titanite closure temperature. The western granodiorites from Kardikal have identical titanite and zircon ages of 2557 ± 6 Ma and 2559 ± 19 Ma, respectively. The eastern Kavital granodiorites yielded titanite ages of 2547 ± 6 Ma and 2544 ± 24 Ma which are identical to the published U–Pb zircon SHRIMP ages. These ages imply that the granitoid rocks surrounding the Hutti greenstone belt were formed as discrete batholiths within a short span of ca. 40 Ma between 2570 Ma and 2530 Ma ago. They were juxtaposed by horizontal tectonic forces against the supracrustal rocks that had formed in oceanic settings at the end of the Archean. The first phase of gold mineralization coincided with the last phase of granodiorite intrusion in the Hutti area. A metamorphic overprint occurred at ca. 2300 Ma ago that reset the Rb–Sr isotope system in biotites and possibly caused hydrothermal activity and enrichment of Au in the ore lodes. The eastern Dharwar Craton consists of quartz monzodiorite–granodiorite–granite suites of rocks that are younger than the greenstone belts that are older than ~2650 Ma reported from earlier studies. The granitoid magmatism took place between 2650 and 2510 Ma ago indicating accretionary growth of the eastern Dharwar Craton.
  •  
3.
  • Andersson, Joel B.H., et al. (author)
  • U-Pb zircon-titanite-apatite age constraints on basin development and basin inversion in the Kiruna mining district, Sweden
  • 2022
  • In: Precambrian Research. - : Elsevier. - 0301-9268 .- 1872-7433. ; 372
  • Journal article (peer-reviewed)abstract
    • To constrain the tectonothermal evolution of the type locality for iron oxide-apatite deposits, we have obtained U-Pb zircon, titanite, and apatite age data for the Kiruna mining district in northernmost Sweden. The results indicate that the host basin initiated in an overall extensional regime as indicated by the deposition of alluvial conglomerates and greywackes. A volcanic intercalation in a conglomerate unit northwest of the Luossavaara iron oxide-apatite deposit yields a U-Pb zircon age of 1887 ± 3 Ma representing the timing of the earliest Orosirian volcanism in the central Kiruna mining district coinciding with the onset of basin development. In-situ analysis of titanite on hydrothermally altered fracture planes within a cataclastic fault damage zone (c. 270 m from the fault core system associated to the Luossavaara iron oxide-apatite deposit) yields complex U-Pb data. Applying a strict discordance filter yields a 207Pb/206Pb age of 1889 ± 26 Ma. The age implies that the fault probably has a syn-volcanic origin and that syn-volcanic faults may have played an important role during iron ore emplacement. The mineralized basin was subsequently buried and metamorphosed under upper greenschist-facies conditions and later tectonically exhumed and cooled below the apatite closure temperature at 1805 ± 26 Ma indicated by apatite from the Nukutus iron oxide-apatite deposit. Basin inversion is temporally constrained by syn-tectonic titanite as part of sodic-calcic + Fe + Cl hydrothermal alteration along a brittle-ductile reverse shear zone to the east of the study area. Titanite grains that show sector and oscillatory zoning yield an age of 1812 ± 3 Ma, which we interpret as the onset of basin inversion. Homogeneous (relatively unzoned) titanite in the same sample yields an age of 1802 ± 8 Ma, tentatively indicating that the tectonothermal activity lasted up to c. 20 m.y.
  •  
4.
  • Augustsson, Carita, et al. (author)
  • 0.3 byr of drainage stability along the Palaeozoic palaeo-Pacific Gondwana margin; a detrital zircon study
  • 2015
  • In: Journal of the Geological Society. - : The Geological Society of London. - 0016-7649 .- 2041-479X. ; 172, s. 186-200
  • Journal article (peer-reviewed)abstract
    • The palaeo-Pacific margin of Gondwana in the present-day south–central Andes is marked by tectonic activity related to subduction and terrane accretion. We present detrital zircon U–Pb data encompassing the Palaeozoic era in northern Chile and northwestern Argentina. Cathodoluminescence images reveal dominantly magmatic zircon barely affected by abrasion and displaying only one growth phase. The main age clusters for these zircon grains are Ediacaran to Palaeozoic with an additional peak at 1.3–0.9 Ga and they can be correlated with ‘Grenvillian’ age, and the Brasiliano, Pampean, and Famatinian orogenies. The zircon data reveal main transport from the nearby Ordovician Famatinian arc and related rocks. The Silurian sandstone units are more comparable with Cambrian units, with Brasiliano and Transamazonian ages (2.2–1.9 Ga) being more common, because the Silurian deposits were situated within or east of the (extinct) Famatinian arc. Hence, the arc acted as a transport barrier throughout Palaeozoic time. The complete suite of zircon ages does not record the accretions of exotic terranes or the Palaeozoic glacial periods. We conclude that the transport system along the palaeo-Pacific margin of Gondwana remained stable for c. 0.3 byr and that provenance data do not necessarily reflect the interior of a continent. Hence, inherited geomorphological features must be taken into account when detrital mineral ages are interpreted.
  •  
5.
  • Barnes, C. J., et al. (author)
  • Using Th-U-Pb geochronology to extract crystallization ages of Paleozoic metamorphic monazite contaminated by initial Pb
  • 2021
  • In: Chemical Geology. - : Elsevier. - 0009-2541 .- 1872-6836. ; 582
  • Journal article (peer-reviewed)abstract
    • Geochronology of Th-rich minerals is advantageous as it allows use of three isotopic systems (i.e., Pb-206/U-238, Pb-207/U-235, and Pb-208/Th-232) for accurate data assessment. The Pb-208/Th-232 system is especially advantageous in cases where the dated mineral includes an initial Pb component, as Pb-208/Th-232 is the least sensitive to the effects of initial Pb amongst the three systems. This benefit is demonstrated with monazite from a white mica schist of the Tsakkok Lens, Scandinavian Caledonides, where three distinct generations of Paleozoic monazite (Mnzsingle bondI, Mnz-II, Mnz-III) are recognized and dated using laser ablation inductively coupled mass spectrometry. The generations are interpreted to represent monazite crystallization in high-pressure conditions (Mnzsingle bondI), followed by lower-pressure monazite growth (Mnz-II), and likely dissolution-reprecipitation of the pre-existing monazite (Mnz-III). The results are compared in Tera-Wasserburg, Wetherill, and Th-U-Pb concordia space for each monazite generation. In both Tera-Wasserburg and Wetherill space, the data are all discordant and indicate an initial Pb component in the monazite. The trend and magnitude of discordance due to initial Pb in Mnz-I and Mnz-II is generally controlled by UO2 content of the monazite, with higher UO2 equating to greater radiogenic Pb and a dampening of the initial Pb effect, which is most prominent in the Pb-207/U-235 system. For the same generations, initial Pb discordance of Pb-206/U-238 versus Pb-208/Th-232 is less apparent due to the insensitivity of Pb-208/Th-232. Mnz-III does not follow the initial Pb trends, likely due to disturbance of the chemical and isotopic systems during recrystallization. Additional discordance in Mnz-I and Mnz-II, which is not related to initial Pb, is recognized and increases with actinide content. The additional discordance may be due to Pb-mobilization in Mnz-I and Mnz-II domains and is revealed when utilizing the( 208)Pb/Th-232 system due to its insensitivity to initial Pb effects. Consequently, relying only on the U-Pb systems can lead to significant initial Pb overcorrections in Tera-Wasserburg or Wetherill concordia space and to calculations of erroneously young concordia dates. The Th-U-Pb concordia method, incorporating all three systems, does not require an initial Pb correction and, therefore, can account for the additional discordance. The Th-U-Pb concordia dates are interpretated as accurate crystallization ages for Mnz-I (484.7 +/- 1.1 Ma, MSWD: 1.4) and Mnz-II (474.7 +/- 1.2 Ma, MSWD: 1.9). The timing for Mnz-III formation is not well-resolved as it formed via result of dissolution-reprecipitation of the pre-existing monazite, likely under lower amphibolite- to greenschist-facies conditions.
  •  
6.
  • Barnes, Christopher J., et al. (author)
  • Zircon and monazite reveal late Cambrian/early Ordovician partial melting of the Central Seve Nappe Complex, Scandinavian Caledonides
  • 2022
  • In: Contributions to Mineralogy and Petrology. - : Springer. - 0010-7999 .- 1432-0967. ; 177:9
  • Journal article (peer-reviewed)abstract
    • The Seve Nappe Complex (SNC) comprises continental rocks of Baltica that were subducted and exhumed during the Caledonian orogeny prior to collision with Laurentia. The tectonic history of the central SNC is investigated by applying in-situ zircon and monazite (Th-)U-Pb geochronology and trace element analysis to (ultra-)high pressure (UHP) paragneisses in the Avardo and Marsfjallet gneisses. Zircons in the Avardo Gneiss exposed at Sippmikk creek exhibit xenocrystic cores with metamorphic rims. Cores show typical igneous REE profiles and were affected by partial Pb-loss. The rims have flat HREE profiles and are interpreted to have crystallized at 482.5 +/- 3.7 Ma during biotite-dehydration melting and peritectic garnet growth. Monazites in the paragneiss are chemically homogeneous and record metamorphism at 420.6 +/- 2.0 Ma. In the Marsfjallet Gneiss exposed near Kittelfjall, monazites exhibit complex zoning with cores enveloped by mantles and rims. The cores are interpreted to have crystallized at 481.6 +/- 2.1 Ma, possibly during garnet resorption. The mantles and rims provide a dispersion of dates and are interpreted to have formed by melt-driven dissolution-reprecipitation of pre-existing monazites until 463.1 +/- 1.8 Ma. Depletion of Y, HREE, and U in the mantles and rims compared to the cores record peritectic garnet and zircon growth. Altogether, the Avardo and Marsfjallet gneisses show evidence of late Cambrian/early Ordovician partial melting (possibly in (U)HP conditions), Middle Ordovician (U)HP metamorphism, and late Silurian tectonism. These results indicate that the SNC underwent south-to-north oblique subduction in late Cambrian time, followed by progressive north-to-south exhumation to crustal levels prior to late Silurian continental collision.
  •  
7.
  •  
8.
  • Bose, Swayoma, et al. (author)
  • Zircon U Pb and Hf isotope insights into the Mesoproterozoic breakup of supercontinent Columbia from the Sausar Belt, Central Indian Tectonic Zone
  • 2023
  • In: Chemie der Erde. - : Elsevier. - 0009-2819 .- 1611-5864. ; , s. 126054-126054
  • Journal article (peer-reviewed)abstract
    • Credible records of rifting and associated sedimentation and granitoid magmatism coinciding with the Columbia breakup event are not common in the Precambrian Indian continent. We report a 1322 ± 3 Ma concordia age for magmatic zircons from the granitoid rocks of the Sausar mobile belt, Central Indian Tectonic Zone (CITZ). The rocks exhibit geochemical characteristics of A-type granitoid rocks and were generated by the dehydration melting of shallow crust in an extensional tectonic setting. The predominantly negative εHf(t) values and partial melting modelling imply their origin by the reworking of pre-existing granitoid crust. TDM2 (Hf) model ages for these rocks range from 2856 Ma to 1885 Ma suggesting a prolonged period of crustal evolution and reworking of Archean to Paleoproterozoic basement rocks. The temperature for magma generation, determined from the calculated zircon saturation temperature of 874.2 °C is suggestive of melting of a thinned crust that was heated by the upwelling asthenosphere in an extensional tectonic setting. The obtained ages provide evidence for the existence of an extensional event during mid-Mesoproterozoic coinciding with the Columbia breakup event. The extension could also be argued as a local event related to far-field stresses generated due to the ca. 1.6 to 1.5 Ga subduction-collision event at the plate margin farther to the north of the studied region of the CITZ. The recrystallized margins of zircon grains yield 207Pb/206Pb ages between 0.95 Ga and 1.0 Ga implying their alteration during a metamorphic event that can be identified with the final amalgamation and stabilization of the northern and southern Indian blocks along the CITZ, coinciding with the Rodinia assembly, during which the regional structural fabric developed.
  •  
9.
  • Callegari, Riccardo, et al. (author)
  • Early Neoproterozoic magmatism and Caledonian metamorphism recorded by the Mårma terrane, Seve Nappe Complex, northern Swedish Caledonides
  • 2023
  • In: Journal of the Geological Society. - : Geological Society of London. - 0016-7649 .- 2041-479X. ; 180:5
  • Journal article (peer-reviewed)abstract
    • Petrology, geochronology and bulk-rock chemistry are combined to investigate the early Neoproterozoic magmatismand Cambrian–Ordovician metamorphism in the northern Swedish Caledonides. This work includes several lithologies of theMårma terrane in the Seve Nappe Complex exposed in the Kebnekaise region. U–Pb zircon geochronology yielded crystallizationages of 835 ± 8 Ma for a mylonitic orthogneiss, 864 ± 3 Ma for the Vistas Granite and 840 ± 7 Ma for an intruded granitic dyke,whereas a gabbro and a granodiorite intrusion gave U–Pb zircon crystallization ages of 856 ± 3 Ma and 850 ± 1 Ma, respectively.U–Pb monazite dating of the mylonitic orthogneiss gave an upper intercept age of 841 ± 7 Ma and a lower intercept age of443 ± 20 Ma. Pressure–temperature estimates derived for the mylonitic orthogneiss reveal metamorphic peak-pressure and peaktemperatureof 10.5–11.75 kbar and 550–610°C and 7.4–8.1 kbar at 615–675°C, respectively.Metamorphic pressure–temperatureestimates for the Vistas Granite yield 6.5–7.5 kbar at 600–625°C. Whole-rock chemistry coupled with U–Pb geochronologyindicates that bimodal magmatism was related to attempted rifting of Rodinia between 870 and 840 Ma.
  •  
10.
  • Carter, Isabel S. M., et al. (author)
  • Cambrian ages for metavolcanic rocks in the Lower Köli Nappes, Swedish Caledonides: implications for the status of the Virisen arc terrane
  • 2023
  • In: Journal of the Geological Society. - : Geological Society of London. - 0016-7649 .- 2041-479X. ; 180:6
  • Journal article (peer-reviewed)abstract
    • The Köli Nappe Complex (KNC) of the Scandinavian Caledonide orogen originated as oceanic terranes within the Iapetus Ocean. These terranes have characteristics of magmatic arcs and associated forearc or back-arc basins and underwent several periods of rifting and magmatism prior to their accretion to the Baltican margin. We present new U–Pb zircon ages from the Lower Köli Ankarede Volcanite Formation in Västerbotten, Sweden. U–Pb ages of magmatic zircon grains from metamorphosed dacitic to andesitic rocks show ages of 512 ± 3.5, 497 ± 2, 491 ± 1 and 488 ± 4 Ma. The three younger ages fit with previous ages for Lower Köli volcanic rocks, but the 512 Ma age is older than any previous age for this unit. These dates constrain the age of magmatism in an ensimatic arc system within Iapetus. We compare this evolution with published information from the other Köli nappes. Magmatic ages within the KNC overlap with ages for an early episode of ultrahigh-pressure (UHP) metamorphism within the underlying Seve Nappe Complex (SNC), supporting the hypothesis that attributes UHP metamorphism within the SNC to subduction beneath the island arc now preserved within the Lower Köli Nappes.
  •  
11.
  • Caton, Summer A., et al. (author)
  • Evolution of the sources of TTG and associated rocks during the Archean from in-situ 87Sr/86Sr isotope analysis of apatite by LA-MC-ICPMS
  • 2022
  • In: Lithos. - : Elsevier BV. - 0024-4937 .- 1872-6143. ; 428-429
  • Journal article (peer-reviewed)abstract
    • Radiogenic isotopes provide an important means towards elucidating Archean crustal evolution. The global Hf and Nd isotope record of Archean crustal fragments has been instrumental to unveiling the history of ancient crustal growth and differentiation. The Rb-Sr system could provide valuable complementary constraints in this regard, as this system is particularly sensitive to magmatic fractionation processes, and the chemical and isotopic evolution of magma sources. Application of this system has so far been complicated, however, by its susceptibility to isotope re-equilibration or alteration of the Rb/Sr parent-daughter ratio. In-situ Sr isotope analysis of primary igneous minerals with very low Rb/Sr, such as apatite, provides a new means to determine the initial 87Sr/86Sr (87Sr/86Sri) values for igneous rocks directly. In this study, we apply in-situ Sr isotope analysis of apatite by LA-MC-ICPMS to tonalite-trondhjemite-granodiorite (TTG) rocks and end-member sanukitoids from Archean cratons worldwide. The 87Sr/86Sri values of sanukitoids are relatively radiogenic, supporting the model in which such rocks are formed by flux melting of a mantle strongly enriched by metasomatism, possibly by slab-derived fluids. The 87Sr/86Sri values for TTGs formed between 3.72 and 3.45 Ga are generally radiogenic, indicating aged amphibolite sources. The 87Sr/86Sri values of younger TTGs are systematically lower and were derived from mafic sources that had an average age of ≤0.2 Gyr. This evolution matches with observations from Hf isotopes for TTGs of similar age and indicates a systematic change in the nature or efficiency of TTG crust formation during the Paleoarchean. In-situ Sr isotope analysis of apatite provides a useful method to uncover the Sr record of the early continental crust, and enables constraints on local source evolution and the general two-step evolutionary process of Archean crust formation.
  •  
12.
  • Chatterjee, Sukalpa, et al. (author)
  • The Singhbhum Craton (India) records a billion year of continental crust formation and modification
  • 2023
  • In: Chemical Geology. - : Elsevier. - 0009-2541 .- 1872-6836. ; 641, s. 121772-121772
  • Journal article (peer-reviewed)abstract
    • The petrogenesis of continental crust from its ultimate mantle source can be reconstructed from the element abundances and radiogenic isotope compositions of ideally pristine igneous rocks. The initial isotope compositions of igneous rocks provide geochemical constraints on the age, composition and evolution of their source(s). Determining initial isotope ratios for rock samples can be challenging, especially in rocks with a long and protracted thermal history. The Rb-Sr system is highly sensitive to parent-daughter element fractionation during magma differentiation. This makes the Rb-Sr isotope systematics ideal to trace the precursor composition of Archean felsic crust and constrain the time of element fractionation during the formation and subsequent modification of continental crust. Initial isotope compositions can be obtained directly from minerals that strongly prefer the daughter element and effectively exclude the parent element of the radio-isotope system of interest. Apatite, having a near zero Rb/Sr ratio, is ideal for preserving its initial 87Sr/86Sr and zircon records initial 176Hf/177Hf compositions. Combined modelling of Sr and Hf isotope data from granitoids of the Archean Singhbhum Craton, indicates that the older Paleoarchean granitoids, emplaced between 3.53 Ga and 3.44 Ga, were derived from a mafic precursor (∼52–54 wt% SiO2) sourced from a depleted mantle at ∼3.71 Ga. Initial 87Sr/86Sr isotope signatures of matrix apatite and apatite inclusions in zircon from the younger Paleoarchean granitoids (3.4–3.2 Ga) of the Singhbhum Craton indicate these younger granitoids were produced by mixing of magma generated from an older mafic source and partial melts derived from the older granitoids. The combined Sr-Hf isotope modelling links the timing of mantle extraction of the precursor material for Paleoarchean Singhbhum granitoids with a known mafic crust extraction event at ∼3.71 Ga. In combination, the new Sr isotope data from apatite combined with whole rock and zircon Hf isotope data from the literature reveal a ∼1 Ga protracted crustal growth and differentiation history of the nucleus of the Singhbhum Craton. By combining radio-isotope systems like 87Rb-87Sr and 176Lu-176Hf, the petrogenesis of Archean felsic crust from the extraction of mafic material from the mantle to reworking in an orogenic cycle to emplacement can be reconstructed. This approach can be applied to other greenstone-gneiss terranes to quantify the spatio-temporal and compositional evolution of voluminous felsic crust and the formation of cratons in the Archean.
  •  
13.
  • Cutts, Jamie, et al. (author)
  • Two‐Stage Cooling and Exhumation of Deeply Subducted Continents
  • 2019
  • In: Tectonics. - 0278-7407 .- 1944-9194.
  • Journal article (peer-reviewed)abstract
    • The burial and exhumation of continental crust during collisional orogeny exert a strong controlon the dynamics of mountain belts and plateaus. Constraining the rates and style of exhumation of deeply buried crust has proven difficult due to complexities in the local geology and thermochronometric methods typically used. To advance this field, we applied trace‐element and U‐Pb laser ablation inductively coupled plasma mass spectrometry analyses to rutile from eclogite and amphibolite samples from the Western Gneiss Complex of Norway—an archetypal continental (ultra)high‐pressure (UHP) terrane. Peak temperature and timing of midcrustal cooling were constrained for samples collected along a subduction‐ and exhumation‐parallel transect, using Zr‐in‐rutile thermometry and U‐Pb rutile geochronology, respectively. Peak temperatures decrease from 830 °C in the UHP domain to 730 °C at the UHP‐HP transition, remain constant at 730 °C across most of the terrane, and decrease to 620 °C at the eclogite‐out boundary. U‐Pb results show that most of the terrane cooled through 500 °C at 380–375 Ma except for the lowest grade region, where cooling occurred approximately 20 million years earlier. The results indicate that exhumation was a two stage process, involving (1) flexural rebound and slab flattening at depth combined with foreland‐directed extrusion, followed by (2) synchronous cooling below 500 °C across the, by then, largely flat‐lying Western Gneiss Complex. The latter implies and requires relatively homogeneous mass removal across a large area, consistent with erosion of an overlying orogenic plateau. The Caledonides were at near‐equatorial latitudes at the time. A Caledonian paleo‐plateau thus may represent a so far unrecognized factor in Devonian and Carboniferous atmospheric circulation and climate forcing.
  •  
14.
  • Drake, Henrik, 1979-, et al. (author)
  • Ancient microbial activity in deep hydraulically conductive fracture zones within the Forsmark target area for deep geological nuclear waste disposal, Sweden
  • 2018
  • In: Geosciences. - : MDPI AG. - 2076-3263. ; 8
  • Journal article (peer-reviewed)abstract
    • Recent studies reveal that organisms from all three domains of life—Archaea, Bacteria, and even Eukarya—can thrive under energy-poor, dark, and anoxic conditions at large depths in the fractured crystalline continental crust. There is a need for an increased understanding of the processes and lifeforms in this vast realm, for example, regarding the spatiotemporal extent and variability of the different processes in the crust. Here, we present a study that set out to detect signs of ancient microbial life in the Forsmark area—the target area for deep geological nuclear waste disposal in Sweden. Stable isotope compositions were determined with high spatial resolution analyses within mineral coatings, and mineralized remains of putative microorganisms were studied in several deep water-conducting fracture zones (down to 663 m depth), from which hydrochemical and gas data exist. Large isotopic variabilities of 13Ccalcite (?36.2 to +20.2‰V-PDB) and 34Spyrite (?11.7 to +37.8‰V-CDT) disclose discrete periods of methanogenesis, and potentially, anaerobic oxidation of methane and related microbial sulfate reduction at several depth intervals. Dominant calcite–water disequilibrium of 18O and 87Sr/86Sr precludes abundant recent precipitation. Instead, the mineral coatings largely reflect an ancient archive of episodic microbial processes in the fracture system, which, according to our microscale Rb–Sr dating of co-genetic adularia and calcite, date back to the mid-Paleozoic. Potential Quaternary precipitation exists mainly at ~400 m depth in one of the boreholes, where mineral–water compositions corresponded.
  •  
15.
  • Drake, Henrik, Docent, 1979-, et al. (author)
  • Biosignatures of ancient microbial life are present across the igneous crust of the Fennoscandian shield
  • 2021
  • In: Communications Earth & Environment. - : Springer Nature. - 2662-4435. ; 2:1
  • Journal article (peer-reviewed)abstract
    • Earth’s crust contains a substantial proportion of global biomass, hosting microbial life up to several kilometers depth. Yet, knowledge of the evolution and extent of life in this environment remains elusive and patchy. Here we present isotopic, molecular and morphological signatures for deep ancient life in vein mineral specimens from mines distributed across the Precambrian Fennoscandian shield. Stable carbon isotopic signatures of calcite indicate microbial methanogenesis. In addition, sulfur isotope variability in pyrite, supported by stable carbon isotopic signatures of methyl-branched fatty acids, suggest subsequent bacterial sulfate reduction. Carbonate geochronology constrains the timing of these processes to the Cenozoic. We suggest that signatures of an ancient deep biosphere and long-term microbial activity are present throughout this shield. We suggest that microbes may have been active in the continental igneous crust over geological timescales, and that subsurface investigations may be valuable in the search for extra-terrestrial life.
  •  
16.
  • Drake, Henrik, Docent, 1979-, et al. (author)
  • In Situ Rb/Sr Geochronology and Stable Isotope Geochemistry Evidence for Neoproterozoic and Paleozoic Fracture-Hosted Fluid Flow and Microbial Activity in Paleoproterozoic Basement, SW Sweden
  • 2023
  • In: Geochemistry Geophysics Geosystems. - : American Geophysical Union (AGU). - 1525-2027. ; 24:5
  • Journal article (peer-reviewed)abstract
    • Recent studies have shown that biosignatures of ancient microbial life exist in mineral coatings in deep bedrock fractures of Precambrian cratons, but such surveys have been few and far between. Here, we report results from southwestern Sweden in an area of 1.6-1.5 Ga Paleoproterozoic rocks heavily reworked by the 1.14-0.96 Ga Sveconorwegian orogeny, a terrane previously scarcely explored for ancient microbial biosignatures. Calcite-pyrite-adularia-illite-coated fractures were analyzed for stable isotopes via Secondary Ion Mass Spectrometry (delta C-13, delta O-18, delta S-34) and in situ Rb/Sr geochronology via Laser-ablation inductively coupled plasma mass spectrometry. The Rb/Sr ages for calcite-adularia and calcite-illite show that several fluid flow events can be discerned (797 +/- 18-769 +/- 7, 391 +/- 5-387 +/- 6, 356 +/- 5-347 +/- 4, and 301 +/- 7 Ma). The delta C-13, delta O-18 and Sr-87/Sr-86 values of different calcite growth zones further confirmed episodic fluid flow. Pyrite delta S-34 values down to -49.9% V-CDT, together with systematically increased delta S-34 from crystal core to rim, suggest formation following microbial sulfate reduction under semi-closed conditions. Assemblages involving MSR-related pyrite generally have Devonian to Permian Rb/Sr ages, indicating an association to extension-related fracturing and fluid mixing during foreland-basin formation linked to Caledonian orogeny in the northwest. An assemblage with an age of 301 +/- 7 Ma is potentially related to Oslo Rift extension, whereas the Neo-Proterozoic ages relate to post-Sveconorwegian extensional tectonics. Remnants of short-chained fatty acids in the youngest calcite coatings further indicate a biogenic origin, while the absence of organic molecules in older calcite is in line with thermal degradation, potentially related to heating during Caledonian foreland basin burial. Plain Language Summary This study investigates mineral coatings in Proterozoic basement fractures of Southwestern Sweden, within the Precambrian Fennoscandian shield, to gain insights into ancient microbial life and paleo-fluid flow. Isotopic signatures of these mineral coatings suggest that microbial sulfate reducers have been present in the system as also indicated by preserved organic molecules. Microanalytical geochronology determinations reveal that the fracture system has been activated several times in the Neoproterozoic, Devonian-Early Carboniferous, and Late Carboniferous/Early Permian. These activations are associated with extension events following the Sveconorwegian and Caledonian orogenies as well as formation of the Oslo Rift. The signs of microbial activity are related to the youngest of these events, post-dating burial in the Caledonian foreland basin, when bedrock temperatures became habitable.
  •  
17.
  • Drake, Henrik, 1979-, et al. (author)
  • Timing and origin of natural gas accumulation in the Siljan impact structure, Sweden
  • 2019
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 10:1
  • Journal article (peer-reviewed)abstract
    • Fractured rocks of impact craters may be suitable hosts for deep microbial communities on Earth and potentially other terrestrial planets, yet direct evidence remains elusive. Here, we present a study of the largest crater of Europe, the Devonian Siljan structure, showing that impact structures can be important unexplored hosts for long-term deep microbial activity. Secondary carbonate minerals dated to 80 ± 5 to 22 ± 3 million years, and thus postdating the impact by more than 300 million years, have isotopic signatures revealing both microbial methanogenesis and anaerobic oxidation of methane in the bedrock. Hydrocarbons mobilized from matured shale source rocks were utilized by subsurface microorganisms, leading to accumulation of microbial methane mixed with a thermogenic and possibly a minor abiotic gas fraction beneath a sedimentary cap rock at the crater rim. These new insights into crater hosted gas accumulation and microbial activity have implications for understanding the astrobiological consequences of impacts. © 2019, The Author(s).
  •  
18.
  • Drake, Henrik, 1979-, et al. (author)
  • Using 87Sr/86Sr LA-MC-ICP-MS Transects within Modern and Ancient Calcite Crystals to Determine Fluid Flow Events in Deep Granite Fractures
  • 2020
  • In: Geosciences. - : MDPI AG. - 2076-3263. ; 10, s. 1-23
  • Journal article (peer-reviewed)abstract
    • The strontium isotope signature (87Sr/86Sr) of calcite precipitated in rock fractures and faults is a frequently used tool to trace paleofluid flow. However, bedrock fracture networks, such as in Precambrian cratons, have often undergone multiple fracture reactivations resulting in complex sequences of fracture mineral infillings. This includes numerous discrete calcite crystal overgrowths. Conventional 87Sr/86Sr analysis of dissolved bulk samples of such crystals is not feasible as they will result in mixed signatures of several growth zonations. In addition, the zonations are too fine-grained for sub-sampling using micro-drilling. Here, we apply high spatial resolution 87Sr/86Sr spot analysis(80 um) in transects through zoned calcite crystals in deep Paleoproterozoic granitoid fractures using laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) to trace discrete signs of paleofluid flow events. We compare the outermost calcite growth zone with 87Sr/86Sr values of the present-day groundwater sampled in the same boreholes to distinguish potential modern precipitates. We then connect our results to previously reported radiometric dating and C and O isotope signatures to understand the temporal history and physicochemical evolution of fluid flow within the fractures. Comparisons of modern calcite precipitated in a borehole over a period of 17 years with modern waters prove the concept of using 87Sr/86Sr as a marker for fluid origin in this environment and for how 87Sr/86Sr changed during marine water infiltration. Intermittent calcite precipitation over very long time spans is indicated in calcite of the currently open fractures, showing an evolution of 87Sr/86Sr from ~0.705–0.707—a population dated to ~1.43 billion years—to crystal overgrowth values at ~0.715–0.717 that overlap with the present-day groundwater values.This shows that high spatial resolution Sr isotope analysis of fine-scaled growth zonation within single calcite crystals is applicable for tracing episodic fluid flow in fracture networks.
  •  
19.
  • Emo, Robert, et al. (author)
  • Evidence for evolved Hadean crust from Sr isotopes in apatite within Eoarchean zircon from the Acasta Gneiss Complex
  • 2018
  • In: Geochimica et Cosmochimica Acta. - : Elsevier BV. - 0016-7037 .- 1872-9533. ; 235, s. 450-462
  • Journal article (peer-reviewed)abstract
    • Current models for the properties of Hadean-Eoarchean crust encompass a full range of possibilities, involving crust that is anywhere from thick and differentiated to thin and mafic. New data are needed to test and refine these models, and, ultimately, to determine how continents were first formed. The Rb-Sr system provides a potentially powerful proxy for crustal evolution and composition. However, this system has thus far been underutilized in studies on early crustal evolution due to its susceptibility to re-equilibration. Overcoming this issue requires new analytical approaches to micro-sample ancient Sr-rich mineral relics that may retain primary Rb-Sr systematics, allowing for the precise and accurate determination of initial 87Sr/86Sr values. In this study, we used a novel application of laser-ablation multi-collector inductively coupled plasma mass spectrometry to determine the Sr isotope composition of apatite inclusions in >3.6 Ga zircon grains from Eoarchean granodiorite gneisses of the Acasta Gneiss Complex, Slave Province, Canada. The 87Rb-corrected 87Sr/86Sr values of these inclusions are largely identical and are distinctly different from values obtained from altered matrix apatite. The inclusion data provide the first direct estimate of initial 87Sr/86Sr for these ancient rocks. Combining this result with information on the protolith and source-extraction age yields estimates for the range of Rb/Sr values, and by extension composition, that the source of these rocks may have had. The data indicate that continental crust containing over 60 wt% of SiO2 was present in the ca. 4.2 Ga source of the Acasta Gneiss Complex. Thus vestiges of evolved crust must have existed within the primitive proto-continents that were present on the Hadean Earth.
  •  
20.
  • Glykou, Aikaterini, et al. (author)
  • Intra- and inter-tooth variation in strontium isotope ratios from prehistoric seals by laser ablation multi-collector inductively coupled plasma mass spectrometry
  • 2018
  • In: Rapid Communications in Mass Spectrometry. - : Wiley. - 0951-4198 .- 1097-0231. ; 32, s. 1215-1224
  • Journal article (peer-reviewed)abstract
    • RationaleStrontium isotope ratios (87Sr/86Sr) in modern‐day marine environments are considered to be homogeneous (~0.7092). However, in the Baltic Sea, the Sr ratios are controlled by mixing seawater and continental drainage from major rivers discharging into the Baltic. This pilot study explores if variations in Sr can be detected in marine mammals from archaeological sites in the Baltic Sea.               Methods87Sr/86Sr ratios were measured in tooth enamel from three seal species by laser ablation multi‐collector inductively coupled plasma mass spectrometry (LA‐MC‐ICP‐MS). The method enables micro‐sampling of solid materials. This is the first time that the method has been applied to marine samples from archaeological collections.               ResultsThe analyses showed inter‐tooth 87Sr/86Sr variation suggesting that different ratios can be detected in different regions of the Baltic Sea. Furthermore, the intra‐tooth variation suggests possible different geographic origin or seasonal movement of seals within different regions in the Baltic Sea through their lifetime.               ConclusionsThe method was successfully applied to archaeological marine samples showing that: (1) the 87Sr/86Sr ratio in marine environments is not uniform, (2) 87Sr/86Sr differences might reflect differences in ecology and life history of different seal species, and (3) archaeological mobility studies based on 87Sr/86Sr ratios in humans should therefore be evaluated together with diet reconstruction.
  •  
21.
  • Grasse, Patricia, et al. (author)
  • GEOTRACES inter-calibration of the stable silicon isotope composition of dissolved silicic acid in seawater
  • 2017
  • In: Journal of Analytical Atomic Spectrometry. - : Royal Society of Chemistry (RSC). - 0267-9477 .- 1364-5544. ; 32:3, s. 562-578
  • Journal article (peer-reviewed)abstract
    • The first inter-calibration study of the stable silicon isotope composition of dissolved silicic acid in seawater, delta Si-30(OH)(4), is presented as a contribution to the international GEOTRACES program. Eleven laboratories from seven countries analyzed two seawater samples from the North Pacific subtropical gyre (Station ALOHA) collected at 300 m and at 1000 m water depth. Sampling depths were chosen to obtain samples with a relatively low (9 mmol L-1, 300 m) and a relatively high (113 mmol L-1, 1000 m) silicic acid concentration as sample preparation differs for low- and highconcentration samples. Data for the 1000 m water sample were not normally distributed so the median is used to represent the central tendency for the two samples. Median delta Si-30(OH)(4) values of +1.66& for the low-concentration sample and +1.25& for the high-concentration sample were obtained. Agreement among laboratories is overall considered very good; however, small but statistically significant differences among the mean isotope values obtained by different laboratories were detected, likely reflecting inter-laboratory differences in chemical preparation including pre-concentration and purification methods together with different volumes of seawater analyzed, and the use of different mass spectrometers including the Neptune MC-ICP-MS (Thermo Fisher (TM), Germany), the Nu Plasma MC-ICP-MS (Nu Instruments (TM), Wrexham, UK), and the Finnigan (TM) (now Thermo Fisher (TM), Germany) MAT 252 IRMS. Future studies analyzing delta Si-30(OH)(4) in seawater should also analyze and report values for these same two reference waters in order to facilitate comparison of data generated among and within laboratories over time.
  •  
22.
  • Hirst, Catherine, 1989-, et al. (author)
  • Iron isotopes reveal seasonal variations in the mechanisms for iron-bearing particle and colloid formation in the Lena River catchment, NE Siberia
  • 2023
  • In: Geochimica et Cosmochimica Acta. - 0016-7037 .- 1872-9533. ; 363, s. 77-93
  • Journal article (peer-reviewed)abstract
    • Large Arctic rivers are an important source of iron (Fe) to the Arctic Ocean, though seasonal variations in the terrestrial source and supply of Fe to the ocean are unknown. To constrain the seasonal variability, we present Fe concentrations and isotopic compositions (δ56Fe) for particulate (>0.22 µm) and colloidal (<0.22 µm–1 kDa) Fe from the Lena River, NE Russia. Samples were collected every month during winter baseflow (September 2012–March 2013) and every 2–3 days before, during and after river ice break-up (May 2015).Iron in particles have isotope ratios lower than crustal values during winter (e.g., δ56FePart = −0.37 ± 0.16‰), and crustal-like values during river ice break-up and spring flood (e.g., δ56FePart = 0.07 ± 0.08‰), indicating a change in the source of particulate Fe between winter and spring flood. Low isotope values are indicative of mineral dissolution, transport of reduced Fe in sub-oxic, ice-covered sub-permafrost groundwaters and near-quantitative precipitation of Fe as particles. Crustal-like isotopic compositions result from the increased supply of detrital particles from riverbank and soil erosion during river ice break-up and flooding. Iron colloids (<0.22 μm) have δ56Fe values that are comparable to or lower than crustal values during winter (e.g., δ56FeCol = −0.08 ± 0.05‰) but similar to or higher than crustal values during spring flood (e.g., δ56FeCol = +0.24 ± 0.11‰). Low δ56Fe ratios for colloidal Fe during winter are consistent with precipitation from isotopically light Fe(II)aq transported in sub-permafrost groundwaters. Higher colloidal δ56Fe ratios during the spring flood indicate that these colloids are supplied from surface soils, where Fe is fractionated via oxidation or organic carbon complexation, similar to during summer. Approximately half of the annual colloidal Fe flux occurs during spring flood while most of the remaining colloidal Fe is supplied during summer months. The total amount of colloidal Fe transported during winter was relatively low. The seasonal variation in colloidal Fe isotope values may be a useful tool to trace the source of colloidal Fe to the Arctic Ocean and monitor future changes in the sources and supply of Fe from the permafrost landscape to the Lena River basin.
  •  
23.
  •  
24.
  • Hirst, Catherine, et al. (author)
  • Iron isotopes reveal the sources of Fe-bearing particles and colloids in the Lena River basin
  • 2020
  • In: Geochimica et Cosmochimica Acta. - : Elsevier BV. - 0016-7037 .- 1872-9533. ; 269, s. 678-692
  • Journal article (peer-reviewed)abstract
    • Large Arctic rivers are important suppliers of iron to the Arctic Ocean. However, the sources of Fe-bearing particles in permafrost-dominated systems and the mechanisms driving this supply of Fe are poorly resolved. Here, Fe isotope ratios were used to determine the sources of Fe-bearing particles and colloids in the Lena River and tributaries. In samples collected after the spring floods, Fe-bearing particles (>0.22 mu m) carried similar to 70% of the Fe and have isotope ratios that are lower than, or similar to that of the continental crust. These particles are composed of a leachable Fe fraction of largely ferrihydrite, with isotope values of -1.40 parts per thousand to -0.12 parts per thousand, and a fraction of clays and Fe oxides with continental crust values. Co-existing Fe-bearing colloids (<0.22 mu m), composed mainly of ferrihydrite, have higher isotope values, of -0.22 parts per thousand to +1.83 parts per thousand. A model is proposed in which soil mineral weathering generates aqueous Fe with lower delta Fe-56 values. During transport, a small fraction of the dissolved Fe is precipitated as colloidal ferrihydrite with higher delta Fe-56 values. Most of the Fe is precipitated onto mineral grains in oxic riparian zones, with the delta Fe-56 values largely generated during weathering. Groundwater discharge and riparian erosion supply the colloids and coated particles to the rivers. The differences between delta Fe-56 values in leachates and detrital grains in Fe-bearing particles agree with values determined in mineral dissolution experiments and in Fe accumulation horizons in soils. The difference in delta Fe-56 values between leachates and colloids reflects isotope fractionation during incremental Fe(III)(aq) precipitation and Fe-OC complexation during transport towards the riparian zone. Overall, the Fe isotope values of riverine particles and colloids reflect processes that occur during mineral dissolution, transport, and secondary mineral formation in permafrost soils.
  •  
25.
  • Jansson, Nils, et al. (author)
  • Cobalt and REE distribution at the Zinkgruvan Zn-Pb-Ag and Cu deposit, Bergslagen, Sweden
  • 2022
  • In: EGU General Assembly 2022. - : Copernicus GmbH.
  • Conference paper (peer-reviewed)abstract
    • The metamorphosed, stratiform, c. 1.9 Ga Zinkgruvan Zn-Pb-Ag deposit is one of Europe’s largest producers of Zn. Since 2010, disseminated Cu mineralization is also mined from dolomite marble in a hydrothermal vent-proximal position in the stratigraphic footwall. Local enrichments of Co and REE exist in the vent-proximal mineralization types, albeit their distribution is poorly known. This contribution provides new data on the distribution of Co and REE within the Zinkgruvan deposit.LA-ICP-MS analysis suggest that lattice-bound cobalt in sphalerite range between 44 ppm and 1372 ppm, with the lowest and highest values occurring in distal and proximal mineralization, respectively. Proximal Co-rich sphalerite is always Fe-rich. Lattice-bound Co also occur in pyrrhotite; ranging from 52 ppm in distal ore to 1608 ppm in proximal ore. There is a concurrent increase in lattice-bound Ni from 3 ppm to 529 ppm. In proximal ore, Co is also hosted by cobalt minerals such as costibite (27.37 wt.% Co), safflorite (16.21 wt.% Co), nickeline (7.54 wt.% Co), cobaltite (32.74 wt.% Co) and cobaltpentlandite (25.49 wt.% Co). Automated quantitative mineralogy suggest that these minerals are highly subordinate to sphalerite (<70.11%) and pyrrhotite (<14.69%), amounting to <2.88% cobalt minerals with safflorite being most common (up to 2.67%). Cobalt deportment calculations suggest that the proportion of whole-rock Co that is lattice-bound to sphalerite and pyrrhotite ranges from 7.80% to 100%, with sphalerite being the main host. Whole-rock As and Ni contents pose a strong control on whether Co occurs lattice-bound or as Co minerals.LA-ICP-MS analysis show that accessory apatite in proximal, marble-hosted Cu mineralization carries a few thousand ppm ∑REE, but locally up to c. 1.6 wt.% ∑REE. The apatite can be subdivided into two types. Type 1 apatite is characterized by dumbbell-shaped chondrite-normalized REE profiles with relative enrichment of in particular Sm-Tb, depletion of Yb-Lu relative to La-Pr, local positive Gd anomalies, and weak positive to negative Eu anomalies. Type 2 apatite is characterized by flat to negatively sloping REE profiles from La to Gd and relative HREE depletion. Additional REE is hosted by monazite. Type 1 apatite was only found as a gangue to Cu mineralization. The Type 1 apatite REE signature is characteristic of hydrothermal apatite, and a direct genetic association with vent-proximal Cu mineralization can be inferred.Comparison with published REE contents in apatite suggest that vent-proximal Zinkgruvan apatite is locally as REE-rich as apatite from Kiruna-type apatite iron oxide deposits, and more REE-rich than apatite in other metamorphosed sediment-hosted sulphide deposits in the world, such as the Gamsberg deposit (RSA).
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 56
Type of publication
journal article (51)
other publication (2)
book chapter (2)
conference paper (1)
Type of content
peer-reviewed (54)
other academic/artistic (2)
Author/Editor
Kooijman, Ellen, 198 ... (28)
Kooijman, Ellen (27)
Kielman-Schmitt, Mel ... (10)
Mezger, Klaus (9)
Schmitt, Melanie (7)
Majka, Jaroslaw (6)
show more...
Whitehouse, Martin (6)
Kielman-Schmitt, Mel ... (6)
Berndt, Jasper (5)
Drake, Henrik, Docen ... (5)
Zack, Thomas, 1968 (4)
Smit, Matthijs (4)
Smit, Matthijs A. (4)
Schmitt, Melanie, 19 ... (4)
Åström, Mats E., 196 ... (3)
Porcelli, Don (3)
Walczak, Katarzyna (3)
Ivarsson, Magnus (3)
Drake, Henrik, 1979- (3)
Ravindran, Arathy (3)
Maximov, Trofim (3)
Tillberg, Mikael (3)
Ratschbacher, Lothar (3)
Whitehouse, Martin J ... (2)
Andersson, Per (2)
Lidén, Kerstin, 1960 ... (2)
Tullborg, Eva-Lena (2)
Mörth, Carl-Magnus (2)
Bleeker, Wouter (2)
Balakrishnan, Sriniv ... (2)
Troll, Valentin R. (2)
Andersson, Per S. (2)
Karlsson, Andreas (2)
Hirst, Catherine (2)
Whitehouse, Martin J ... (2)
Barnes, Christopher ... (2)
Callegari, Riccardo (2)
Vetemaa, Markus (2)
Paiste, Päärn (2)
Pandey, Om Prakash (2)
Kutscher, Liselott (2)
Cutts, Jamie (2)
Reinhardt, Manuel (2)
Roberts, Nick (2)
Tillberg, Mikael, 19 ... (2)
Piličiauskienė, Gied ... (2)
Krall, Lindsay (2)
Kershaw, Jane (2)
Merkel, Stephen W. (2)
Oravisjärvi, Jani (2)
show less...
University
Swedish Museum of Natural History (50)
Stockholm University (9)
Uppsala University (8)
Linnaeus University (8)
University of Gothenburg (5)
Luleå University of Technology (2)
show more...
Lund University (2)
Swedish University of Agricultural Sciences (2)
RISE (1)
Swedish National Heritage Board (1)
show less...
Language
English (56)
Research subject (UKÄ/SCB)
Natural sciences (50)
Humanities (5)
Agricultural Sciences (3)
Engineering and Technology (1)
Medical and Health Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view