SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kozub Budzyń Gabriela) "

Sökning: WFRF:(Kozub Budzyń Gabriela)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Budzyn, Bartosz, et al. (författare)
  • Experimental constraints on the relative stabilities of the two systems monazite-(Ce) - allanite-(Ce) - fluorapatite and xenotime-(Y) - (Y,HREE)-rich epidote - (Y,HREE)-rich fluorapatite, in high Ca and Na-Ca environments under P-T conditions of 200-1000 MPa and 450-750 A degrees C
  • 2017
  • Ingår i: Mineralogy and Petrology. - : SPRINGER WIEN. - 0930-0708 .- 1438-1168. ; 111:2, s. 183-217
  • Tidskriftsartikel (refereegranskat)abstract
    • The relative stabilities of phases within the two systems monazite-(Ce) - fluorapatite - allanite-(Ce) and xenotime-(Y) - (Y,HREE)-rich fluorapatite - (Y,HREE)-rich epidote have been tested experimentally as a function of pressure and temperature in systems roughly replicating granitic to pelitic composition with high and moderate bulk CaO/Na2O ratios over a wide range of P-T conditions from 200 to 1000 MPa and 450 to 750 A degrees C via four sets of experiments. These included (1) monazite-(Ce), labradorite, sanidine, biotite, muscovite, SiO2, CaF2, and 2 M Ca(OH)(2); (2) monazite-(Ce), albite, sanidine, biotite, muscovite, SiO2, CaF2, Na2Si2O5, and H2O; (3) xenotime-(Y), labradorite, sanidine, biotite, muscovite, garnet, SiO2, CaF2, and 2 M Ca(OH)(2); and (4) xenotime-(Y), albite, sanidine, biotite, muscovite, garnet, SiO2, CaF2, Na2Si2O5, and H2O. Monazite-(Ce) breakdown was documented in experimental sets (1) and (2). In experimental set (1), the Ca high activity (estimated bulk CaO/Na2O ratio of 13.3) promoted the formation of REE-rich epidote, allanite-(Ce), REE-rich fluorapatite, and fluorcalciobritholite at the expense of monazite-(Ce). In contrast, a bulk CaO/Na2O ratio of similar to 1.0 in runs in set (2) prevented the formation of REE-rich epidote and allanite-(Ce). The reacted monazite-(Ce) was partially replaced by REE-rich fluorapatite-fluorcalciobritholite in all runs, REE-rich steacyite in experiments at 450 A degrees C, 200-1000 MPa, and 550 A degrees C, 200-600 MPa, and minor cheralite in runs at 650-750 A degrees C, 200-1000 MPa. The experimental results support previous natural observations and thermodynamic modeling of phase equilibria, which demonstrate that an increased CaO bulk content expands the stability field of allanite-(Ce) relative to monazite-(Ce) at higher temperatures indicating that the relative stabilities of monazite-(Ce) and allanite-(Ce) depend on the bulk CaO/Na2O ratio. The experiments also provide new insights into the re-equilibration of monazite-(Ce) via fluid-aided coupled dissolution-reprecipitation, which affects the Th-U-Pb system in runs at 450 A degrees C, 200-1000 MPa, and 550 A degrees C, 200-600 MPa. A lack of compositional alteration in the Th, U, and Pb in monazite-(Ce) at 550 A degrees C, 800-1000 MPa, and in experiments at 650-750 A degrees C, 200-1000 MPa indicates the limited influence of fluid-mediated alteration on volume diffusion under high P-T conditions. Experimental sets (3) and (4) resulted in xenotime-(Y) breakdown and partial replacement by (Y,REE)-rich fluorapatite to Y-rich fluorcalciobritholite. Additionally, (Y,HREE)-rich epidote formed at the expense of xenotime-(Y) in three runs with 2 M Ca(OH)(2) fluid, at 550 A degrees C, 800 MPa; 650 A degrees C, 800 MPa; and 650 A degrees C, 1000 MPa similar to the experiments involving monazite-(Ce). These results confirm that replacement of xenotime-(Y) by (Y,HREE)-rich epidote is induced by a high Ca bulk content with a high CaO/Na2O ratio. These experiments demonstrate also that the relative stabilities of xenotime-(Y) and (Y,HREE)-rich epidote are strongly controlled by pressure.
  •  
2.
  • Jaranowski, Maciej, et al. (författare)
  • U-Pb and trace element zircon and apatite petrochronology of eclogites from the Scandinavian Caledonides
  • 2023
  • Ingår i: Contributions to Mineralogy and Petrology. - : Springer. - 0010-7999 .- 1432-0967. ; 178
  • Tidskriftsartikel (refereegranskat)abstract
    • The petrochronological records of eclogites in the Scandinavian Caledonides are investigated using EPMA and LA-ICPMS of zircon and apatite for U-Pb geochronology, combined with major and trace element characteristics. Metamorphic zircon from two eclogites from the Lofoten-Vesteralen Complex (Lofoten Archipelago region) collectively yielded a Concordia age 427.8 & PLUSMN; 5.7 Ma and an upper intercept U-Pb age 425 & PLUSMN; 30 Ma. Apatites from the same eclogites provided U-Pb lower intercepts at 322 & PLUSMN; 28 Ma and 354 & PLUSMN; 33 Ma, with the latter also yielding a younger age of 227 & PLUSMN; 24 Ma. Two eclogites from the Lower Seve Nappe (Northern Jamtland) demonstrate different zircon and apatite age records. Metamorphic zircon provided Concordia ages of 467.2 & PLUSMN; 5.9 Ma and 444.5 & PLUSMN; 5.5 Ma, which resolve the age of prograde metamorphism and zircon growth during retrogression, respectively. The lower intercept U-Pb ages of apatites from the same eclogites are 436 & PLUSMN; 18 and 415 & PLUSMN; 25 Ma, respectively. In combination with their geochemical characteristics, they suggest two separate stages of exhumation of eclogite bodies in the Lower Seve Nappe. Zircons from an eclogite from the Blaho Nappe (Nordoyane Archipelago) yielded a continuum of concordant U-Pb dates from ca. 435 to 395 Ma, which suggests several cycles of HT metamorphism within short intervals. Distinctive trace element characteristics of apatites from the Blaho Nappe eclogite suggest formation coeval with zircon and garnet during HT metamorphism, but Pb diffusion behaved as an open system until cooling during exhumation of the nappe at 390 & PLUSMN; 12 Ma (lower intercept U-Pb age of apatite). To summarize, this study presents the high potential of coupled zircon and apatite petrochronology of eclogites in resolving their metamorphic evolution, particularly with respect to using trace element characteristics of apatites to constrain the records of their growth, alterations and the meaning of their U-Pb age record.
  •  
3.
  • Jansson, Nils, et al. (författare)
  • Cobalt and REE distribution at the Zinkgruvan Zn-Pb-Ag and Cu deposit, Bergslagen, Sweden
  • 2022
  • Ingår i: EGU General Assembly 2022. - : Copernicus GmbH.
  • Konferensbidrag (refereegranskat)abstract
    • The metamorphosed, stratiform, c. 1.9 Ga Zinkgruvan Zn-Pb-Ag deposit is one of Europe’s largest producers of Zn. Since 2010, disseminated Cu mineralization is also mined from dolomite marble in a hydrothermal vent-proximal position in the stratigraphic footwall. Local enrichments of Co and REE exist in the vent-proximal mineralization types, albeit their distribution is poorly known. This contribution provides new data on the distribution of Co and REE within the Zinkgruvan deposit.LA-ICP-MS analysis suggest that lattice-bound cobalt in sphalerite range between 44 ppm and 1372 ppm, with the lowest and highest values occurring in distal and proximal mineralization, respectively. Proximal Co-rich sphalerite is always Fe-rich. Lattice-bound Co also occur in pyrrhotite; ranging from 52 ppm in distal ore to 1608 ppm in proximal ore. There is a concurrent increase in lattice-bound Ni from 3 ppm to 529 ppm. In proximal ore, Co is also hosted by cobalt minerals such as costibite (27.37 wt.% Co), safflorite (16.21 wt.% Co), nickeline (7.54 wt.% Co), cobaltite (32.74 wt.% Co) and cobaltpentlandite (25.49 wt.% Co). Automated quantitative mineralogy suggest that these minerals are highly subordinate to sphalerite (<70.11%) and pyrrhotite (<14.69%), amounting to <2.88% cobalt minerals with safflorite being most common (up to 2.67%). Cobalt deportment calculations suggest that the proportion of whole-rock Co that is lattice-bound to sphalerite and pyrrhotite ranges from 7.80% to 100%, with sphalerite being the main host. Whole-rock As and Ni contents pose a strong control on whether Co occurs lattice-bound or as Co minerals.LA-ICP-MS analysis show that accessory apatite in proximal, marble-hosted Cu mineralization carries a few thousand ppm ∑REE, but locally up to c. 1.6 wt.% ∑REE. The apatite can be subdivided into two types. Type 1 apatite is characterized by dumbbell-shaped chondrite-normalized REE profiles with relative enrichment of in particular Sm-Tb, depletion of Yb-Lu relative to La-Pr, local positive Gd anomalies, and weak positive to negative Eu anomalies. Type 2 apatite is characterized by flat to negatively sloping REE profiles from La to Gd and relative HREE depletion. Additional REE is hosted by monazite. Type 1 apatite was only found as a gangue to Cu mineralization. The Type 1 apatite REE signature is characteristic of hydrothermal apatite, and a direct genetic association with vent-proximal Cu mineralization can be inferred.Comparison with published REE contents in apatite suggest that vent-proximal Zinkgruvan apatite is locally as REE-rich as apatite from Kiruna-type apatite iron oxide deposits, and more REE-rich than apatite in other metamorphosed sediment-hosted sulphide deposits in the world, such as the Gamsberg deposit (RSA).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy