SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kuchel P. W.) "

Sökning: WFRF:(Kuchel P. W.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Doverskog, M., et al. (författare)
  • Determination of NADH-dependent glutamate synthase (GOGAT) in Spodoptera frugiperda (Sf9) insect cells by a selective H-1/N-15 NMR in vitro assay
  • 2000
  • Ingår i: Journal of Biotechnology. - 0168-1656 .- 1873-4863. ; 79:1, s. 87-97
  • Tidskriftsartikel (refereegranskat)abstract
    • This is the second of two papers [Drews, M., Doverskog, M., Qhman, L., Chapman, B.E., Jacobsson, U., Kuchel, P.W., Haggstrom, L., 2000. Pathways of glutamine metabolism in Spodoptera frugiperda (Sf9) insect cells: evidence for the presence of the nitrogen assimilation system, and a metabolic switch by H-1/N-15 NMR. J. Biotechnol. 78, 23-37]. where the general goal has been to determine and characterise the glutamine metabolism in Sf9 cells. The presence of glutamate synthase (GOGAT) activity was investigated in cell-free extracts of S. frugiperda (Sf9) insect cells by modified H-1/N-15 spin-echo and gradient enhanced multiple quantum coherence NMR spectroscopy techniques. Cell-free extracts were prepared from cells cultured in a serum-free medium. The assay conditions were based on conventional spectrophotometric and chromatographic methods. NMR data showed that nitrogen from [5-N-15] glutamine was selectively incorporated into 2-oxoglutarate forming [2-N-15] glutamate with a specific activity of 4.15 +/- 0.21 nmol [2-N-15] glutamate min (-1) (mg total protein)(-1) in the cell-free extracts. The enzyme activity was exclusively dependent on NADH as coenzyme and was completely inhibited by 1 mM azaserine. From the results obtained, we conclude that Sf9 cells possess NADH-GOGAT activity. Furthermore, the high specificity of the NMR method enables distinction of competing reactions from glutaminase and glutamate dehydrogenase.
  •  
2.
  • Drews, M., et al. (författare)
  • Pathways of glutamine metabolism in Spodoptera frugiperda (Sf9) insect cells : evidence for the presence of the nitrogen assimilation system, and a metabolic switch by H-1/N-15 NMR
  • 2000
  • Ingår i: Journal of Biotechnology. - 0168-1656 .- 1873-4863. ; 78:1, s. 23-37
  • Tidskriftsartikel (refereegranskat)abstract
    • H-1/N-15 and C-13 NMR were used to investigate metabolism in Spodoptera frugiperda (Sf9) cells. Labelled substrates ([2-N-15]glutamine, [5-N-15]glutamine, [2-N-15]glutamate, (NH4Cl)-N-15, [2-N-15]alanine, and [1-C-13]glucose) were added to batch cultures and the concentration of labelled excreted metabolites (alanine, NH4+, glutamine, glycerol, and lactate) were quantified. Cultures with excess glucose and glutamine produce alanine as the main metabolic by-product while no ammonium ions are released. H-1/N-15 NMR data showed that both the amide and amine-nitrogen of glutamine was incorporated into alanine in these cultures. The amide-nitrogen of glutamine was not transferred to the amine-position in glutamate (for further transamination to alanine) via free NH4+ but directly via an azaserine inhibitable amidotransfer reaction. In glutamine-free media (NH4+)-N-15 was consumed and incorporated into alanine. (NH4+)-N-15 was also incorporated into the amide-position of glutamine synthesised by the cells. These data suggest that the nitrogen assimilation system, glutamine synthetase/glutamate synthase (NADH-GOGAT), is active in glutamine-deprived cells. In cultures devoid of glucose, ammonium is the main metabolic by-product while no alanine is formed. The ammonium ions stem both from the amide and amine-nitrogen of glutamine, most likely via glutaminase and glutamate dehydrogenase. C-13 NMR revealed that the [1-C-13] label from glucose appeared in glycerol, alanine, lactate, and in extracellular glutamine. Labelling data also showed that intermediates of the tricarboxylic acid cycle were recycled to glycolysis and that carbon sources, other than glucose-derived acetylCoA, entered the cycle. Furthermore, Sf9 cell cultures excreted significant amounts glycerol (1.9-3.2 mM) and ethanol (6 mM), thus highlighting the importance of sinks for reducing equivalents in maintaining the cytosolic redox balance.
  •  
3.
  • Labotka, R. J., et al. (författare)
  • Ammonia permeability of erythrocyte membrane studied by 14N and 15N saturation transfer NMR spectroscopy
  • 1995
  • Ingår i: American Journal of Physiology - Cell Physiology. - 0363-6143 .- 1522-1563. ; 268:3, s. C686-699
  • Tidskriftsartikel (refereegranskat)abstract
    • The permeability of biological membranes to the rapidly penetrating compound ammonia is extremely difficult to study due to the lack of readily available radionuclides. 14N and 15N saturation transfer nuclear magnetic resonance (NMR) experiments were used to measure the erythrocyte membrane permeability of ammonia under equilibrium exchange conditions. When 14N spectra from erythrocytes suspended in NH4Cl solution were obtained in the presence of the extracellular shift reagent dysprosium tripolyphosphate, intracellular and extracellular ammonia signals were readily resolved. Comparison with 15N spectra from erythrocyte suspensions containing 15N4Cl revealed that the intracellular [14N]ammonia signals were 100% NMR visible. 14N and 15N saturation transfer NMR experiments showed similar influx rates and permeabilities, indicating no loss of saturation transfer due to quadrupolar relaxation of 14N nuclei upon membrane passage. Ammonia influx was directly proportional to concentration (0.39 +/- 0.012 fmol.cell-1.s-1.mM-1 at pH 7.0) and not saturable, which is consistent with passive diffusion. Apparent ammonia permeability increased with pH over the range of pH 6-8 as the fraction of free NH3 increased. However, diffusion through unstirred layers became increasingly rate limiting. The permeability of the unstirred layers (1.1 +/- 0.45 x 10(-3) cm/s) was considerably lower than that of NH3 (0.21 +/- 0.014 cm/s). The Arrhenius activation energy for NH3 permeability was 49.5 +/- 11.8 kJ/mol. No evidence for NH+4 influx over the time domain of these experiments was found.
  •  
4.
  • Lundberg, Peter, et al. (författare)
  • 1H NMR determination of urinary betaine in patients with premature vascular disease and mild homocysteinemia
  • 1995
  • Ingår i: Clinical Chemistry. - 0009-9147 .- 1530-8561. ; 41:2, s. 275-283
  • Tidskriftsartikel (refereegranskat)abstract
    • Urinary N,N,N-trimethylglycine (betaine) and N,N-dimethylglycine (DMG) have been identified and quantified for clinical purposes by proton nuclear magnetic resonance (1H NMR) measurement in previous studies. We have assessed these procedures by using both one-dimensional (1-D) and 2-D NMR spectroscopy, together with pH titration of urinary extracts to help assign 1H NMR spectral peaks. The betaine calibration curve linearity was excellent (r = 0.997, P = 0.0001) over the concentration range 0.2-1.2 mmol/L, and CVs for replicate betaine analyses ranged from 7% (n = 10) at the lowest concentration to 1% (n = 9) at the highest. The detection limit for betaine was < 15 mumol/L. Urinary DMG concentrations were substantially lower than those of betaine. Urinary betaine and DMG concentrations measured by 1H NMR spectroscopy from 13 patients with premature vascular disease and 17 normal controls provided clinically pertinent data. We conclude that 1H NMR provides unique advantages as a research tool for determination of urinary betaine and DMG concentrations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy