SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kuhlmann Stephen) "

Sökning: WFRF:(Kuhlmann Stephen)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abazajian, Kevork, et al. (författare)
  • CMB-S4 : Forecasting Constraints on Primordial Gravitational Waves
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 926:1
  • Tidskriftsartikel (refereegranskat)abstract
    • CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5σ, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL.
  •  
2.
  • Kessler, Richard, et al. (författare)
  • Photometric Estimates of Redshifts and Distance Moduli for Type Ia Supernovae
  • 2010
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 717:1, s. 40-57
  • Tidskriftsartikel (refereegranskat)abstract
    • Large planned photometric surveys will discover hundreds of thousands of supernovae (SNe), outstripping the resources available for spectroscopic follow-up and necessitating the development of purely photometric methods to exploit these events for cosmological study. We present a light curve fitting technique for type Ia supernova (SN Ia) photometric redshift (photo-z) estimation in which the redshift is determined simultaneously with the other fit parameters. We implement this "LCFIT+Z" technique within the frameworks of the MLCS2K2 and SALTII light curve fit methods and determine the precision on the redshift and distance modulus. This method is applied to a spectroscopically confirmed sample of 296 SNe Ia from the Sloan Digital Sky Survey-II (SDSS-II) SN Survey and 37 publicly available SNe Ia from the Supernova Legacy Survey (SNLS). We have also applied the method to a large suite of realistic simulated light curves for existing and planned surveys, including the SDSS, SNLS, and the Large Synoptic Survey Telescope. When intrinsic SN color fluctuations are included, the photo-z precision for the simulation is consistent with that in the data. Finally, we compare the LCFIT+Z photo-z precision with previous results using color-based SN photo-z estimates.
  •  
3.
  • Kessler, Richard, et al. (författare)
  • Results from the Supernova Photometric Classification Challenge
  • 2010
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 122:898, s. 1415-1431
  • Tidskriftsartikel (refereegranskat)abstract
    • We report results from the Supernova Photometric Classification Challenge (SNPhotCC), a publicly released mix of simulated supernovae (SNe), with types (Ia, Ibc, and II) selected in proportion to their expected rates. The simulation was realized in the griz filters of the Dark Energy Survey (DES) with realistic observing conditions (sky noise, point-spread function, and atmospheric transparency) based on years of recorded conditions at the DES site. Simulations of non-Ia-type SNe are based on spectroscopically confirmed light curves that include unpublished non-Ia samples donated from the Carnegie Supernova Project (CSP), the Supernova Legacy Survey (SNLS), and the Sloan Digital Sky Survey-II (SDSS-II). A spectroscopically confirmed subset was provided for training. We challenged scientists to run their classification algorithms and report a type and photo-z for each SN. Participants from 10 groups contributed 13 entries for the sample that included a host-galaxy photo-z for each SN and nine entries for the sample that had no redshift information. Several different classification strategies resulted in similar performance, and for all entries the performance was significantly better for the training subset than for the unconfirmed sample. For the spectroscopically unconfirmed subset, the entry with the highest average figure of merit for classifying SNe Ia has an efficiency of 0.96 and an SN Ia purity of 0.79. As a public resource for the future development of photometric SN classification and photo-z estimators, we have released updated simulations with improvements based on our experience from the SNPhotCC, added samples corresponding to the Large Synoptic Survey Telescope (LSST) and the SDSS-II, and provided the answer keys so that developers can evaluate their own analysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy