SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lagadec E.) "

Sökning: WFRF:(Lagadec E.)

  • Resultat 1-25 av 42
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Desidera, S., et al. (författare)
  • The SPHERE infrared survey for exoplanets (SHINE) I. Sample definition and target characterization
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 651
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Large surveys with new-generation high-contrast imaging instruments are needed to derive the frequency and properties of exoplanet populations with separations from ~5 to 300 au. A careful assessment of the stellar properties is crucial for a proper understanding of when, where, and how frequently planets form, and how they evolve. The sensitivity of detection limits to stellar age makes this a key parameter for direct imaging surveys.Aims. We describe the SpHere INfrared survey for Exoplanets (SHINE), the largest direct imaging planet-search campaign initiated at the VLT in 2015 in the context of the SPHERE Guaranteed Time Observations of the SPHERE consortium. In this first paper we present the selection and the properties of the complete sample of stars surveyed with SHINE, focusing on the targets observed during the first phase of the survey (from February 2015 to February 2017). This early sample composed of 150 stars is used to perform a preliminary statistical analysis of the SHINE data, deferred to two companion papers presenting the survey performance, main discoveries, and the preliminary statistical constraints set by SHINE.Methods. Based on a large database collecting the stellar properties of all young nearby stars in the solar vicinity (including kinematics, membership to moving groups, isochrones, lithium abundance, rotation, and activity), we selected the original sample of 800 stars that were ranked in order of priority according to their sensitivity for planet detection in direct imaging with SPHERE. The properties of the stars that are part of the early statistical sample wererevisited, including for instance measurements from the Gaia Data Release 2. Rotation periods were derived for the vast majority of the late-type objects exploiting TESS light curves and dedicated photometric observations.Results. The properties of individual targets and of the sample as a whole are presented.
  •  
2.
  • Langlois, M., et al. (författare)
  • The SPHERE infrared survey for exoplanets (SHINE) : II. Observations, data reduction and analysis, detection performances, and initial results
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 651
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In recent decades, direct imaging has confirmed the existence of substellar companions (exoplanets or brown dwarfs) on wide orbits (>10 au) around their host stars. In striving to understand their formation and evolution mechanisms, in 2015 we initiated the SPHERE infrared survey for exoplanets (SHINE), a systematic direct imaging survey of young, nearby stars that is targeted at exploring their demographics.Aims. We aim to detect and characterize the population of giant planets and brown dwarfs beyond the snow line around young, nearby stars. Combined with the survey completeness, our observations offer the opportunity to constrain the statistical properties (occurrence, mass and orbital distributions, dependency on the stellar mass) of these young giant planets.Methods. In this study, we present the observing and data analysis strategy, the ranking process of the detected candidates, and the survey performances for a subsample of 150 stars that are representative of the full SHINE sample. Observations were conducted in a homogeneous way between February 2015 and February 2017 with the dedicated ground-based VLT/SPHERE instrument equipped with the IFS integral field spectrograph and the IRDIS dual-band imager, covering a spectral range between 0.9 and 2.3 μm. We used coronographic, angular, and spectral differential imaging techniques to achieve the best detection performances for this study, down to the planetary mass regime.Results. We processed, in a uniform manner, more than 300 SHINE observations and datasets to assess the survey typical sensitivity as a function of the host star and of the observing conditions. The median detection performance reached 5σ-contrasts of 13 mag at 200 mas and 14.2 mag at 800 mas with the IFS (YJ and YJH bands), and of 11.8 mag at 200 mas, 13.1 mag at 800 mas, and 15.8 mag at 3 as with IRDIS in H band, delivering one of the deepest sensitivity surveys thus far for young, nearby stars. A total of sixteen substellar companions were imaged in this first part of SHINE: seven brown dwarf companions and ten planetary-mass companions.These include two new discoveries, HIP 65426 b and HIP 64892 B, but not the planets around PDS70 that had not been originally selected for the SHINE core sample. A total of 1483 candidates were detected, mainly in the large field of view that characterizes IRDIS. The color-magnitude diagrams, low-resolution spectrum (when available with IFS), and follow-up observations enabled us to identify the nature (background contaminant or comoving companion) of about 86% of our subsample. The remaining cases are often connected to crowded-field follow-up observations that were missing. Finally, even though SHINE was not initially designed for disk searches, we imaged twelve circumstellar disks, including three new detections around the HIP 73145, HIP 86598, and HD 106906 systems.Conclusions. Nowadays, direct imaging provides a unique opportunity to probe the outer part of exoplanetary systems beyond 10 au to explore planetary architectures, as highlighted by the discoveries of: one new exoplanet, one new brown dwarf companion, and three new debris disks during this early phase of SHINE. It also offers the opportunity to explore and revisit the physical and orbital properties of these young, giant planets and brown dwarf companions (relative position, photometry, and low-resolution spectrum in near-infrared, predicted masses, and contrast in order to search for additional companions). Finally, these results highlight the importance of finalizing the SHINE systematic observation of about 500 young, nearby stars for a full exploration of their outer part to explore the demographics of young giant planets beyond 10 au and to identify the most interesting systems for the next generation of high-contrast imagers on very large and extremely large telescopes.
  •  
3.
  • Vigan, A., et al. (författare)
  • The SPHERE infrared survey for exoplanets (SHINE) : III. The demographics of young giant exoplanets below 300 au with SPHERE
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 651
  • Tidskriftsartikel (refereegranskat)abstract
    • The SpHere INfrared Exoplanet (SHINE) project is a 500-star survey performed with SPHERE on the Very Large Telescope for the purpose of directly detecting new substellar companions and understanding their formation and early evolution. Here we present an initial statistical analysis for a subsample of 150 stars spanning spectral types from B to M that are representative of the full SHINE sample. Our goal is to constrain the frequency of substellar companions with masses between 1 and 75 MJup and semimajor axes between 5 and 300 au. For this purpose, we adopt detection limits as a function of angular separation from the survey data for all stars converted into mass and projected orbital separation using the BEX-COND-hot evolutionary tracks and known distance to each system. Based on the results obtained for each star and on the 13 detections in the sample, we use a Markov chain Monte Carlo tool to compare our observations to two different types of models. The first is a parametric model based on observational constraints, and the second type are numerical models that combine advanced core accretion and gravitational instability planet population synthesis. Using the parametric model, we show that the frequencies of systems with at least one substellar companion are 23.0−9.7+13.5, 5.8−2.8+4.7, and 12.6−7.1+12.9% for BA, FGK, and M stars, respectively. We also demonstrate that a planet-like formation pathway probably dominates the mass range from 1–75 MJup for companions around BA stars, while for M dwarfs, brown dwarf binaries dominate detections. In contrast, a combination of binary star-like and planet-like formation is required to best fit the observations for FGK stars. Using our population model and restricting our sample to FGK stars, we derive a frequency of 5.7−2.8+3.8%, consistent with predictions from the parametric model. More generally, the frequency values that we derive are in excellent agreement with values obtained in previous studies.
  •  
4.
  • Chauvin, G., et al. (författare)
  • Discovery of a warm, dusty giant planet around HIP 65426
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 605
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The SHINE program is a high-contrast near-infrared survey of 600 young, nearby stars aimed at searching for and characterizing new planetary systems using VLT/SPHERE's unprecedented high-contrast and high-angular-resolution imaging capabilities. It is also intended to place statistical constraints on the rate, mass and orbital distributions of the giant planet population at large orbits as a function of the stellar host mass and age to test planet-formation theories.Methods. We used the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE to acquire high-contrast coronagraphic differential near-infrared images and spectra of the young A2 star HIP 65426. It is a member of the similar to 17 Myr old Lower Centaurus-Crux association. Results. At a separation of 830 mas (92 au projected) from the star, we detect a faint red companion. Multi-epoch observations confirm that it shares common proper motion with HIP 65426. Spectro-photometric measurements extracted with IFS and IRDIS between 0.95 and 2.2 mu m indicate a warm, dusty atmosphere characteristic of young low-surface-gravity L5-L7 dwarfs. Hot-start evolutionary models predict a luminosity consistent with a 6-12 M-Jup, T-eff = 1300-1600K and R = 1.5 +/- 0.1 R-Jup giant planet. Finally, the comparison with Exo-REM and PHOENIX BT-Settl synthetic atmosphere models gives consistent effective temperatures but with slightly higher surface gravity solutions of log(g) = 4.0-5.0 with smaller radii (1.0-1.3 R-Jup).Conclusions. Given its physical and spectral properties, HIP 65426 b occupies a rather unique placement in terms of age, mass, and spectral-type among the currently known imaged planets. It represents a particularly interesting case to study the presence of clouds as a function of particle size, composition, and location in the atmosphere, to search for signatures of non-equilibrium chemistry, and finally to test the theory of planet formation and evolution.
  •  
5.
  • Cheetham, A., et al. (författare)
  • Discovery of a brown dwarf companion to the star HIP 64892
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 615
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a bright, brown dwarf companion to the star HIP 64892, imaged with VLT/SPHERE during the SHINE exoplanet survey. The host is a B9.5V member of the Lower-Centaurus-Crux subgroup of the Scorpius Centaurus OB association. The measured angular separation of the companion (1.2705 +/- 0.0023) corresponds to a projected distance of 159 +/- 12AU. We observed the target with the dual-band imaging and long-slit spectroscopy modes of the IRDIS imager to obtain its spectral energy distribution (SED) and astrometry. In addition, we reprocessed archival NACO L-band data, from which we also recover the companion. Its SED is consistent with a young (<30 Myr), low surface gravity object with a spectral type of M9 gamma +/- 1. From comparison with the BT-Settl atmospheric models we estimate an effective temperature of T-eff = 2600 +/- 100 K, and comparison of the companion photometry to the COND evolutionary models yields a mass of similar to 29-37 M-J at the estimated age of 16(-7)(+15) Myr for the system. The star HIP 64892 is a rare example of an extreme-mass ratio system (q similar to 0.01) and will be useful for testing models relating to the formation and evolution of such low-mass objects.
  •  
6.
  • Lagrange, A. -M., et al. (författare)
  • Post-conjunction detection of beta Pictoris b with VLT/SPHERE
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 621
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. With an orbital distance comparable to that of Saturn in the solar system, beta Pictoris b is the closest (semi-major axis similar or equal to 9 au) exoplanet that has been imaged to orbit a star. Thus it offers unique opportunities for detailed studies of its orbital, physical, and atmospheric properties, and of disk-planet interactions. With the exception of the discovery observations in 2003 with NaCo at the Very Large Telescope (VLT), all following astrometric measurements relative to beta Pictoris have been obtained in the southwestern part of the orbit, which severely limits the determination of the planet's orbital parameters.Aims. We aimed at further constraining beta Pictoris b orbital properties using more data, and, in particular, data taken in the northeastern part of the orbit.Methods. We used SPHERE at the VLT to precisely monitor the orbital motion of beta beta Pictoris b since first light of the instrument in 2014.Results. We were able to monitor the planet until November 2016, when its angular separation became too small (125 mas, i.e., 1.6 au) and prevented further detection. We redetected beta Pictoris b on the northeast side of the disk at a separation of 139 mas and a PA of 30 degrees in September 2018. The planetary orbit is now well constrained. With a semi-major axis (sma) of a = 9.0 +/- 0.5 au (1 sigma), it definitely excludes previously reported possible long orbital periods, and excludes beta Pictoris b as the origin of photometric variations that took place in 1981. We also refine the eccentricity and inclination of the planet. From an instrumental point of view, these data demonstrate that it is possible to detect, if they exist, young massive Jupiters that orbit at less than 2 au from a star that is 20 pc away.
  •  
7.
  • Sissa, E., et al. (författare)
  • High-contrast study of the candidate planets and protoplanetary disk around HD 100546
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 619
  • Tidskriftsartikel (refereegranskat)abstract
    • The nearby Herbig Be star HD 100546 is known to be a laboratory for the study of protoplanets and their relation with the circum stellar disk, which is carved by at least two gaps. We observed the HD 100546 environment with high-contrast imaging exploiting several different observing modes of SPHERE, including data sets with and without coronagraphs, dual band imaging, integral field spectroscopy and polarimetry. The picture emerging from these different data sets is complex. Flux-conservative algorithm images clearly show the disk up to 200 au. More aggressive algorithms reveal several rings and warped arms that are seen overlapping the main disk. Some of these structures are found to lie at considerable height over the disk mid-plane at about 30 au. Our images demon-strate that the brightest wings close to the star in the near side of the disk are a unique structure, corresponding to the outer edge of the intermediate disk at similar to 40 au. Modeling of the scattered light from the disk with a geometrical algorithm reveals that a moderately thin structure (H/r = 0.18 at 40 au) can well reproduce the light distribution in the flux-conservative images. We suggest that the gap between 44 and 113 au spans between the 1:2 and 3:2 resonance orbits of a massive body located at similar to 70 au, which might coincide with the candidate planet HD 100546b detected with previous thermal infrared (IR) observations. In this picture, the two wings can be the near side of a ring formed by disk material brought out of the disk at the 1:2 resonance with the same massive object. While we find no clear evidence confirming detection of the planet candidate HD 100546c in our data, we find a diffuse emission close to the expected position of HD 100546b. This source can be described as an extremely reddened substellar object surrounded by a dust cloud or its circumplanetary disk. Its astrometry is broadly consistent with a circular orbital motion on the disk plane, a result that could be confirmed with new observations. Further observations at various wavelengths are required to fully understand the complex phenomenology of HD 100546.
  •  
8.
  • Singh, G., et al. (författare)
  • Revealing asymmetrical dust distribution in the inner regions of HD 141569
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 653
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The combination of high-contrast imaging with spectroscopy and polarimetry offers a pathway to studying the grain distribution and properties of debris disks in exquisite detail. Here, we focus on the case of a gas-rich debris disk around HD 141569A, which features a multiple-ring morphology first identified with SPHERE in the near-infrared.Aims. We obtained polarimetric differential imaging with SPHERE in the H-band to compare the scattering properties of the innermost ring at 44 au with former observations in total intensity with the same instrument. In polarimetric imaging, we observed that the intensity of the ring peaks in the south-east, mostly in the forward direction, whereas in total intensity imaging, the ring is detected only at the south. This noticeable characteristic suggests a non-uniform dust density in the ring. With these two sets of images, we aim to study the distribution of the dust to solve for the actual dust distribution.Methods. We implemented a density function varying azimuthally along the ring and generated synthetic images both in polarimetry and in total intensity, which are then compared to the actual data. The search for the best-fit model was performed both with a grid-based and an MCMC approach. Using the outcome of this modelization, we further measured the polarized scattering phase function for the observed scattering angle between 33 degrees and 147 degrees as well as the spectral reflectance of the southern part of the ring between 0.98 and 2.1 mu m. We tentatively derived the grain properties by comparing these quantities with MCFOST models and assuming Mie scattering.Results. We find that the dust density peaks in the south-west at an azimuthal angle of 220 degrees similar to 238 degrees with a rather broad width of 61 degrees similar to 127 degrees. The difference in the intensity distributions observed in polarimetry and total intensity is the result of this particular morphology. Although there are still uncertainties that remain in the determination of the anisotropic scattering factor, the implementation of an azimuthal density variation to fit the data proved to be robust. Upon elaborating on the origin of this dust density distribution, we conclude that it could be the result of a massive collision when we account for the effect of the high gas mass that is present in the system on the dynamics of grains. In terms of grain composition, our preliminary interpretation indicates a mixture of porous sub-micron sized astro-silicate and carbonaceous grains.Conclusions. The SPHERE observations have allowed, for the first time, for meaningful constraints to be placed on the dust distribution beyond the standard picture of a uniform ring-like debris disk. However, future studies with a multiwavelength approach and additional detailed modeling would be required to better characterize the grain properties in the HD 141569 system.
  •  
9.
  • Boccaletti, A., et al. (författare)
  • Observations of fast-moving features in the debris disk of AU Mic on a three-year timescale : Confirmation and new discoveries
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 614
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The nearby and young M star AU Mic is surrounded by a debris disk in which we previously identified a series of large-scale arch-like structures that have never been seen before in any other debris disk and that move outward at high velocities. Aims. We initiated a monitoring program with the following objectives: (1) track the location of the structures and better constrain their projected speeds, (2) search for new features emerging closer in, and ultimately (3) understand the mechanism responsible for the motion and production of the disk features. Methods. AU Mic was observed at 11 different epochs between August 2014 and October 2017 with the IR camera and spectrograph of SPHERE. These high-contrast imaging data were processed with a variety of angular, spectral, and polarimetric differential imaging techniques to reveal the faintest structures in the disk. We measured the projected separations of the features in a systematic way for all epochs. We also applied the very same measurements to older observations from the Hubble Space Telescope (HST) with the visible cameras STIS and ACS. Results. The main outcomes of this work are (1) the recovery of the five southeastern broad arch-like structures we identified in our first study, and confirmation of their fast motion (projected speed in the range 4-12 km s(-1) ); (2) the confirmation that the very first structures observed in 2004 with ACS are indeed connected to those observed later with STIS and now SPHERE; (3) the discovery of two new very compact structures at the northwest side of the disk (at 0.40 '' and 0.55 '' in May 2015) that move to the southeast at low speed; and (4) the identification of a new arch-like structure that might be emerging at the southeast side at about 0.4 from the star (as of May 2016). Conclusions. Although the exquisite sensitivity of SPHERE allows one to follow the evolution not only of the projected separation, but also of the specific morphology of each individual feature, it remains difficult to distinguish between possible dynamical scenarios that may explain the observations. Understanding the exact origin of these features, the way they are generated, and their evolution over time is certainly a significant challenge in the context of planetary system formation around M stars.
  •  
10.
  • Gratton, R., et al. (författare)
  • Searching for the near-infrared counterpart of Proxima c using multi-epoch high-contrast SPHERE data at VLT
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 638
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Proxima Centauri is the closest star to the Sun and it is known to host an Earth-like planet in its habitable zone; very recently a second candidate planet was proposed based on radial velocities. At quadrature, the expected projected separation of this new candidate is larger than 1 arcsec, making it a potentially interesting target for direct imaging.Aims. While identification of the optical counterpart of this planet is expected to be very difficult, successful identification would allow for a detailed characterization of the closest planetary system.Methods. We searched for a counterpart in SPHERE images acquired over four years through the SHINE survey. In order to account for the expected large orbital motion of the planet, we used a method that assumes the circular orbit obtained from radial velocities and exploits the sequence of observations acquired close to quadrature in the orbit. We checked this with a more general approach that considers Keplerian motion, called K-stacker.Results. We did not obtain a clear detection. The best candidate has signal-to-noise ratio (S/N) = 6.1 in the combined image. A statistical test suggests that the probability that this detection is due to random fluctuation of noise is <1%, but this result depends on the assumption that the distribution of noise is uniform over the image, a fact that is likely not true. The position of this candidate and the orientation of its orbital plane fit well with observations in the ALMA 12 m array image. However, the astrometric signal expected from the orbit of the candidate we detected is 3 away from the astrometric motion of Proxima as measured from early Gaia data. This, together with the unexpectedly high flux associated with our direct imaging detection, means we cannot confirm that our candidate is indeed Proxima c.Conclusions. On the other hand, if confirmed, this would be the first observation in imaging of a planet discovered from radial velocities and the second planet (after Fomalhaut b) of reflecting circumplanetary material. Further confirmation observations should be done as soon as possible.
  •  
11.
  • Mesa, D., et al. (författare)
  • New spectro-photometric characterization of the substellar object HR2562B using SPHERE
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. HR2562 is an F5V star located at similar to 33 pc from the Sun hosting a substellar companion that was discovered using the Gemini planet imager (GPI) instrument. The main objective of the present paper is to provide an extensive characterization of the substellar companion, by deriving its fundamental properties. Methods. We observed HR2562 with the near-infrared branch composed by the integral field spectrograph (IFS) and the infrared dual band spectrograph (IRDIS) of the spectro-polarimetric high-contrast exoplanet research (SPHERE) instrument at the very large telescope (VLT). During our observations IFS was operating in the YJ band, while IRDIS was observing with the H broadband filter. The data were reduced with the dedicated SPHERE GTO pipeline, which is custom designed for this instrument. On the reduced images, we then applied the post-processing procedures that are specifically prepared to subtract the speckle noise. Results. The companion is clearly detected in both IRDIS and IFS datasets. We obtained photometry in three different spectral bands. The comparison with template spectra allowed us to derive a spectral type of T2-T3 for the companion. Using both evolutionary and atmospheric models we inferred the main physical parameters of the companion obtaining a mass of 32 +/- 14 M-Jup, T-eff = 1100 +/- 200 K, and log g = 4.75 +/- 0.41.
  •  
12.
  • Mesa, D., et al. (författare)
  • Upper limits for mass and radius of objects around Proxima Cen from SPHERE/VLT
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966 .- 1745-3925 .- 1745-3933. ; 466:1, s. l118-L122
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent discovery of an earth-like planet around Proxima Centauri has drawn much attention to this star and its environment. We performed a series of observations of Proxima Centauri using Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE), the planet-finder instrument installed at the European Southern Observatory (ESO) Very Large Telescope (VLT) UT3, using its near-infrared modules, InfraRed Dual-band Imager and Spectrograph (IRDIS) and IFS. No planet was detected directly, but we set upper limits on the mass up to 7 au by exploiting the AMES-COND models. Our IFS observations reveal that no planet more massive than similar to 6-7 M-Jup can be present within 1 au. The dual-band imaging camera IRDIS also enables us to probe larger separations than other techniques such as radial velocity or astrometry. We obtained mass limits of the order of 4 M-Jup at separations of 2 au or larger, representing the most stringent mass limits at separations larger than 5 au available at the moment. We also made an attempt to estimate the radius of possible planets around Proxima using the reflected light. Since the residual noise for the observations is dominated by photon noise and thermal background, longer exposures in good observing conditions could improve the achievable contrast limit further.
  •  
13.
  • Bonavita, M., et al. (författare)
  • New binaries from the SHINE survey
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 663
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the multiple stellar systems observed within the SpHere INfrared survey for Exoplanet (SHINE). SHINE searched for sub-stellar companions to young stars using high contrast imaging. Although stars with known stellar companions within the SPHERE field of view (< 5.5 arcsec) were removed from the original target list, we detected additional stellar companions to 78 of the 463 SHINE targets observed so far. Twenty-seven per cent of the systems have three or more components. Given the heterogeneity of the sample in terms of observing conditions and strategy, tailored routines were used for data reduction and analysis, some of which were specifically designed for these datasets. We then combined SPHERE data with literature and archival data, TESS light curves, and Gaia parallaxes and proper motions for an accurate characterisation of the systems. Combining all data, we were able to constrain the orbits of 25 systems. We carefully assessed the completeness of our sample for separations between 50–500 mas (corresponding to periods of a few years to a few decades), taking into account the initial selection biases and recovering part of the systems excluded from the original list due to their multiplicity. This allowed us to compare the binary frequency for our sample with previous studies and highlight interesting trends in the mass ratio and period distribution. We also found that, when such an estimate was possible, the values of the masses derived from dynamical arguments were in good agreement with the model predictions. Stellar and orbital spins appear fairly well aligned for the 12 stars that have enough data, which favours a disk fragmentation origin. Our results highlight the importance of combining different techniques when tackling complex problems such as the formation of binaries and show how large samples can be useful for more than one purpose.
  •  
14.
  • Chiavassa, A., et al. (författare)
  • The extended atmosphere and circumstellar environment of the cool evolved star VX Sagittarii as seen by MATISSE star
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. VX Sgr is a cool, evolved, and luminous red star whose stellar parameters are difficult to determine, which affects its classification.Aims. We aim to spatially resolve the photospheric extent as well as the circumstellar environment.Methods. We used interferometric observations obtained with the MATISSE instrument in the L (3-4 mu m), M (4.5-5 mu m), and N (8-13 mu m) bands. We reconstructed monochromatic images using the MIRA software. We used 3D radiation-hydrodynamics simulations carried out with (COBOLD)-B-5 and a uniform disc model to estimate the apparent diameter and interpret the stellar surface structures. Moreover, we employed the radiative transfer codes OPTIM3D and RADMC3D to compute the spectral energy distribution for the L, M, and N bands, respectively.Results. MATISSE observations unveil, for the first time, the morphology of VX Sgr across the L, M, and N bands. The reconstructed images show a complex morphology with brighter areas whose characteristics depend on the wavelength probed. We measured the angular diameter as a function of the wavelength and showed that the photospheric extent in the L and M bands depends on the opacity through the atmosphere. In addition to this, we also concluded that the observed photospheric inhomogeneities can be interpreted as convection-related surface structures. The comparison in the N band yielded a qualitative agreement between the N-band spectrum and simple dust radiative transfer simulations. However, it is not possible to firmly conclude on the interpretation of the current data because of the difficulty in constraing the model parameters using the limited accuracy of our absolute flux calibration.Conclusions. MATISSE observations and the derived reconstructed images unveil the appearance of VX Sgr's stellar surface and circumstellar environment across a very large spectral domain for the first time.
  •  
15.
  • Mesa, D., et al. (författare)
  • VLT/SPHERE exploration of the young multiplanetary system PDS70
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 632
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. PDS 70 is a young (5.4 Myr), nearby (similar to 113 pc) star hosting a known transition disk with a large gap. Recent observations with SPHERE and NACO in the near-infrared (NIR) allowed us to detect a planetary mass companion, PDS 70 b, within the disk cavity. Moreover, observations in H-alpha with MagAO and MUSE revealed emission associated to PDS 70 b and to another new companion candidate, PDS 70 c, at a larger separation from the star. PDS 70 is the only multiple planetary system at its formation stage detected so far through direct imaging.Aims. Our aim is to confirm the discovery of the second planet PDS 70 c using SPHERE at VLT, to further characterize its physical properties, and search for additional point sources in this young planetary system.Methods. We re-analyzed archival SPHERE NIR observations and obtained new data in Y, J, H and K spectral bands for a total of four different epochs. The data were reduced using the data reduction and handling pipeline and the SPHERE data center. We then applied custom routines (e.g., ANDROMEDA and PACO) to subtract the starlight.Results. We re-detect both PDS 70 b and c and confirm that PDS 70 c is gravitationally bound to the star. We estimate this second planet to be less massive than 5 M-Jup and with a T-eff around 900 K. Also, it has a low gravity with log g between 3.0 and 3.5 dex. In addition, a third object has been identified at short separation (similar to 0.12 '') from the star and gravitationally bound to the star. Its spectrum is however very blue, meaning that we are probably seeing stellar light reflected by dust and our analysis seems to demonstrate that it is a feature of the inner disk. We cannot however completely exclude the possibility that it is a planetary mass object enshrouded by a dust envelope. In this latter case, its mass should be of the order of a few tens of M-circle plus. Moreover, we propose a possible structure for the planetary system based on our data, and find that this structure cannot be stable on a long timescale.
  •  
16.
  • Zurlo, A., et al. (författare)
  • The gravitational mass of Proxima Centauri measured with SPHERE from a microlensing event
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 480:1, s. 236-244
  • Tidskriftsartikel (refereegranskat)abstract
    • Proxima Centauri, our closest stellar neighbour, is a low-mass M5 dwarf orbiting in a triple system. An Earth-mass planet with an 11 d period has been discovered around this star. The star's mass has been estimated only indirectly using a mass-luminosity relation, meaning that large uncertainties affect our knowledge of its properties. To refine the mass estimate, an independent method has been proposed: gravitational microlensing. By taking advantage of the close passage of Proxima Cen in front of two background stars, it is possible to measure the astrometric shift caused by the microlensing effect due to these close encounters and estimate the gravitational mass of the lens (Proxima Cen). Microlensing events occurred in 2014 and 2016 with impact parameters, the closest approach of Proxima Cen to the background star, of 1.6 +/- 0.1 and 0.5 +/- 0.1 arcsec, respectively. Accurate measurements of the positions of the background stars during the last 2 yr have been obtained with Hubble Space Telescope/Wide Field Camera 3, and with Very Large Telescope/Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) from the ground. The SPHERE campaign started on 2015 March, and continued for more than 2 yr, covering nine epochs. The parameters of Proxima Centauri's motion on the sky, along with the pixel scale, true North, and centring of the instrument detector were readjusted for each epoch using the background stars visible in the IRDIS field of view. The experiment has been successful and the astrometric shift caused by themicrolensing effect has been measured for the second event in 2016. We used this measurement to derive a mass of 0.150(-0.051)(+0.062) (an error of similar to 40 per cent) M-circle dot for Proxima Centauri acting as a lens. This is the first and the only currently possible measurement of the gravitational mass of Proxima Centauri.
  •  
17.
  • Chauvin, G., et al. (författare)
  • Investigating the young solar system analog HD 95086 A combined HARPS and SPHERE exploration
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. HD 95086 (A8V, 17 Myr) hosts a rare planetary system for which a multi-belt debris disk and a giant planet of 4-5 Mjup have been directly imaged.Aims. Our study aims to characterize the global architecture of this young system using the combination of radial velocity and direct imaging observations. We want to characterize the physical and orbital properties of HD 95086 b, search for additional planets at short and wide orbits and image the cold outer debris belt in scattered light.Methods. We used HARPS at the ESO 3.6 m telescope to monitor the radial velocity of HD 95086 over two years and investigate the existence of giant planets at less than 3 au orbital distance. With the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE at VLT, we imaged the faint circumstellar environment beyond 10 au at six epochs between 2015 and 2017.Results. We do not detect additional giant planets around HD 95086. We identify the nature (bound companion or background contaminant) of all point-like sources detected in the IRDIS field of view. None of them correspond to the ones recently discovered near the edge of the cold outer belt by ALMA. HD 95086 b is resolved for the first time in J-band with IFS. Its near-infrared spectral energy distribution is well fitted by a few dusty and/or young L7-L9 dwarf spectral templates. The extremely red 1-4 mu m spectral distribution is typical of low-gravity objects at the L/T spectral type transition. The planet's orbital motion is resolved between January 2015 and May 2017. Together with past NaCo measurements properly re-calibrated, our orbital fitting solutions favor a retrograde low to moderate-eccentricity orbit e = 0.2(-0.2)(+0.3), with a semi-major axis similar to 52 au corresponding to orbital periods of similar to 288 yr and an inclination that peaks at i = 141 degrees, which is compatible with a planet-disk coplanar configuration. Finally, we report the detection in polarimetric differential imaging of the cold outer debris belt between 100 and 300 au, consistent in radial extent with recent ALMA 1.3 mm resolved observations.
  •  
18.
  • Danilovich, T., et al. (författare)
  • ATOMIUM: halide molecules around the S-type AGB star W Aquilae
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 655
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. S-type asymptotic giant branch (AGB) stars are thought to be intermediates in the evolution of oxygen- to carbon-rich AGB stars. The chemical compositions of their circumstellar envelopes are also intermediate but have not been studied in as much detail as their carbon- and oxygen-rich counterparts. W Aql is a nearby S-type star, with well-known circumstellar parameters, making it an ideal object for in-depth study of less common molecules. Aims. We aim to determine the abundances of AlCl and AlF from rotational lines, which have been observed for the first time towards an S-type AGB star. In combination with models based on PACS observations, we aim to update our chemical kinetics network based on these results. Methods. We analyse ALMA observations towards W Aql of AlCl in the ground and first two vibrationally excited states and AlF in the ground vibrational state. Using radiative transfer models, we determine the abundances and spatial abundance distributions of (AlCl)-Cl-35, (AlCl)-Cl-37, and AlF. We also model HCl and HF emission and compare these models to PACS spectra to constrain the abundances of these species. Results. AlCl is found in clumps very close to the star, with emission confined within 0 ''.1 of the star. AlF emission is more extended, with faint emission extending 0 ''.2 to 0 ''.6 from the continuum peak. We find peak abundances, relative to H-2, of 1.7 x 10(-7) for (AlCl)-Cl-35, 7 x 10(-8) for (AlCl)-Cl-37, and 1 x 10(-7) for AlF. From the PACS spectra, we find abundances of 9.7 x 10(-8) and <= 10(-8), relative to H-2, for HCl and HF, respectively. Conclusions. The AlF abundance exceeds the solar F abundance, indicating that fluorine synthesised in the AGB star has already been dredged up to the surface of the star and ejected into the circumstellar envelope. From our analysis of chemical reactions in the wind, we conclude that AlF may participate in the dust formation process, but we cannot fully explain the rapid depletion of AlCl seen in the wind.
  •  
19.
  • Decin, L., et al. (författare)
  • (Sub)stellar companions shape the winds of evolved stars
  • 2020
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 369:6509, s. 1497-1500
  • Tidskriftsartikel (refereegranskat)abstract
    • Binary interactions dominate the evolution of massive stars, but their role is less clear for low- and intermediate-mass stars. The evolution of a spherical wind from an asymptotic giant branch (AGB) star into a nonspherical planetary nebula (PN) could be due to binary interactions. We observed a sample of AGB stars with the Atacama Large Millimeter/submillimeter Array (ALMA) and found that their winds exhibit distinct nonspherical geometries with morphological similarities to planetary nebulae (PNe). We infer that the same physics shapes both AGB winds and PNe; additionally, the morphology and AGB mass-loss rate are correlated. These characteristics can be explained by binary interaction. We propose an evolutionary scenario for AGB morphologies that is consistent with observed phenomena in AGB stars and PNe.
  •  
20.
  • Engler, N., et al. (författare)
  • The HIP 79977 debris disk in polarized light
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 607
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Debris disks are observed around 10 to 20% of FGK main-sequence stars as infrared excess emission. They are important signposts for the presence of colliding planetesimals and therefore provide important information about the evolution of planetary systems. Direct imaging of such disks reveals their geometric structure and constrains their dust-particle properties. Aims. We present observations of the known edge-on debris disk around HIP 79977 (HD 146897) taken with the ZIMPOL differential polarimeter of the SPHERE instrument. We measure the observed polarization signal and investigate the diagnostic potential of such data with model simulations. Methods. SPHERE-ZIMPOL polarimetric data of the 15 Myr-old F star HIP 79977 (Upper Sco, 123 pc) were taken in the Very Broad Band (VBB) filter (lambda(c) = 735 nm, Delta lambda = 290 nm) with a spatial resolution of about 25 mas. Imaging polarimetry efficiently suppresses the residual speckle noise from the AO system and provides a differential signal with relatively small systematic measuring uncertainties. We measure the polarization flux along and perpendicular to the disk spine of the highly inclined disk for projected separations between 0 : 200 (25 AU) and 1 : 600 (200 AU). We perform model calculations for the polarized flux of an optically thin debris disk which are used to determine or constrain the disk parameters of HIP 79977. Results. We measure a polarized flux contrast ratio for the disk of (F-pol) disk/F-* = (5 : 5 +/- 0 : 9) x 10(-4) in the VBB filter. The surface brightness of the polarized flux reaches a maximum of SBmax = 16.2 mag arcsec(-2) at a separation of 0 : 200 -0 : 500 along the disk spine with a maximum surface brightness contrast of 7 : 64 mag arcsec(-2). The polarized flux has a minimum near the star < 0 : 200 because no or only little polarization is produced by forward or backward scattering in the disk section lying in front of or behind the star. The width of the disk perpendicular to the spine shows a systematic increase in FWHM from 0 : 1 (12 AU) to 0 : 3 -0.5, when going from a separation of 0 : 2 to > 1. This can be explained by a radial blow-out of small grains. The data are modelled as a circular dust belt with a well defined disk inclination i = 85(+/- 1 : 5)degrees and a radius between r(0) = 60 and 90 AU. The radial density dependence is described by (r/r(0))alpha with a steep (positive) power law index alpha = 5 inside r(0) and a more shallow (negative) index alpha = -2 : 5 outside r(0). The scattering asymmetry factor lies between g = 0.2 and 0.6 (forward scattering) adopting a scattering-angle dependence for the fractional polarization such as that for Rayleigh scattering. Conclusions. Polarimetric imaging with SPHERE-ZIMPOL of the edge-on debris disk around HIP 79977 provides accurate profiles for the polarized flux. Our data are qualitatively very similar to the case of AU Mic and they confirm that edge-on debris disks have a polarization minimum at a position near the star and a maximum near the projected separation of the main debris belt. The comparison of the polarized flux contrast ratio (F-pol)(disk)/F* with the fractional infrared excess provides strong constraints on the scattering albedo of the dust.
  •  
21.
  • Gottlieb, C. A., et al. (författare)
  • ATOMIUM: ALMA tracing the origins of molecules in dust forming oxygen rich M-type stars: Motivation, sample, calibration, and initial results
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 660
  • Tidskriftsartikel (refereegranskat)abstract
    • This overview paper presents atomium, a Large Programme in Cycle 6 with the Atacama Large Millimeter/submillimeter Array (ALMA). The goal of atomium is to understand the dynamics and the gas phase and dust formation chemistry in the winds of evolved asymptotic giant branch (AGB) and red supergiant (RSG) stars. A more general aim is to identify chemical processes applicable to other astrophysical environments. Seventeen oxygen-rich AGB and RSG stars spanning a range in (circum)stellar parameters and evolutionary phases were observed in a homogeneous observing strategy allowing for an unambiguous comparison. Data were obtained between 213.83 and 269.71 GHz at high (0.025-0.050), medium (0.13-0.24), and low (~1) angular resolution. The sensitivity per ~1.3 km s-1 channel was 1.5-5 mJy beam-1, and the line-free channels were used to image the millimetre wave continuum. Our primary molecules for studying the gas dynamics and dust formation are CO, SiO, AlO, AlOH, TiO, TiO2, and HCN; secondary molecules include SO, SO2, SiS, CS, H2O, and NaCl. The scientific motivation, survey design, sample properties, data reduction, and an overview of the data products are described. In addition, we highlight one scientific result - the wind kinematics of the atomium sources. Our analysis suggests that the atomium sources often have a slow wind acceleration, and a fraction of the gas reaches a velocity which can be up to a factor of two times larger than previously reported terminal velocities assuming isotropic expansion. Moreover, the wind kinematic profiles establish that the radial velocity described by the momentum equation for a spherical wind structure cannot capture the complexity of the velocity field. In fifteen sources, some molecular transitions other than 12CO v = 0 J = 2 - 1 reach a higher outflow velocity, with a spatial emission zone that is often greater than 30 stellar radii, but much less than the extent of CO. We propose that a binary interaction with a (sub)stellar companion may (partly) explain the non-monotonic behaviour of the projected velocity field. The atomium data hence provide a crucial benchmark for the wind dynamics of evolved stars in single and binary star models.
  •  
22.
  • Koumpia, E., et al. (författare)
  • Optical and near-infrared observations of the Fried Egg Nebula: Multiple shell ejections on a 100 yr timescale from a massive yellow hypergiant
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 635
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The fate of a massive star during the latest stages of its evolution is highly dependent on its mass-loss rate and geometry and therefore knowing the geometry of the circumstellar material close to the star and its surroundings is crucial. Aims. We aim to provide insight into the nature (i.e. geometry, rates) of mass-loss episodes, and in particular, the connection between the observed asymmetries due to the mass lost in a fast wind or during a previous, prodigious mass-losing phase. In this context, yellow hypergiants offer a good opportunity to study mass-loss events. Methods. We analysed a large set of optical and near-infrared data in spectroscopic and photometric, spectropolarimetric, and interferometric (GRAVITY/VLTI) modes, towards the yellow hypergiant IRAS 17163-3907. We used X-shooter optical observations to determine the spectral type of this yellow hypergiant and we present the first model-independent, reconstructed images of IRAS 17163-3907 at these wavelengths tracing milli-Arcsecond scales. Lastly, we applied a 2D radiative transfer model to fit the dereddened photometry and the radial profiles of published diffraction-limited VISIR images at 8.59 μm, 11.85 μm, and 12.81 μm simultaneously, adopting a revised distance determination using Gaia Data Release 2 measurements. Results. We constrain the spectral type of IRAS 17163-3907 to be slightly earlier than A6Ia (Teffâ ∼â 8500 K). The interferometric observables around the 2 μm window towards IRAS 17163-3907 show that the Brγ emission appears to be more extended and asymmetric than the Naâ » I and the continuum emission. Interestingly, the spectrum of IRAS 17163-3907 around 2 μm shows Mgâ » II emission that is not previously seen in other objects of its class. In addition, Brγ shows variability in a time interval of four months that is not seen towards Naâ » I. Lastly, in addition to the two known shells surrounding IRAS 17163-3907, we report on the existence of a third hot inner shell with a maximum dynamical age of only 30 yr. Conclusions. The 2 μm continuum originates directly from the star and not from hot dust surrounding the stellar object. The observed spectroscopic variability of Brγ could be a result of variability in the mass-loss rate. The interpretation of the presence of Naâ » I emission at closer distances to the star compared to Brγ has been a challenge in various studies. To address this, we examine several scenarios. We argue that the presence of a pseudo-photosphere, which was traditionally considered to be the prominent explanation, is not needed and that it is rather an optical depth effect. The three observed distinct mass-loss episodes are characterised by different mass-loss rates and can inform theories of mass-loss mechanisms, which is a topic still under debate both in theory and observations. We discuss these in the context of photospheric pulsations and wind bi-stability mechanisms.
  •  
23.
  • Montargès, M., et al. (författare)
  • The VLT/SPHERE view of the A TOMIUM cool evolved star sample: I. Overview: Sample characterization through polarization analysis
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 671
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Low- and intermediate-mass asymptotic giant stars and massive red supergiant stars are important contributors to the chemical enrichment of the Universe. They are among the most efficient dust factories of the Galaxy, harboring chemically rich circumstellar environments. Yet, the processes that lead to dust formation or the large-scale shaping of the mass loss still escape attempts at modeling. Aims. Through the ATOMIUM project, we aim to present a consistent view of a sample of 17 nearby cool evolved stars. Our goals are to unveil the dust-nucleation sites and morphologies of the circumstellar envelope of such stars and to probe ambient environments with various conditions. This will further enhance our understanding of the roles of stellar convection and pulsations, and that of companions in shaping the dusty circumstellar medium. Methods. Here we present and analyze VLT/SPHERE-ZIMPOL polarimetric maps obtained in the visible (645- 820 nm) of 14 out of the 17 ATOMIUM sources. They were obtained contemporaneously with the ALMA high spatial resolution data. To help interpret the polarized signal, we produced synthetic maps of light scattering by dust, through 3D radiative transfer simulations with the RADMC3D code. Results. The degree of linear polarization (DoLP) observed by ZIMPOL spreads across several optical filters. We infer that it primarily probes dust located just outside of the point spread function of the central source, and in or near the plane of the sky. The polarized signal is mainly produced by structures with a total optical depth close to unity in the line of sight, and it represents only a fraction of the total circumstellar dust. The maximum DoLP ranges from 0.03- 0.38 depending on the source, fractions that can be reproduced by our 3D pilot models for grains composed of olivine, melilite, corundum, enstatite, or forsterite. The spatial structure of the DoLP shows a diverse set of shapes, including clumps, arcs, and full envelopes. Only for three sources do we note a correlation between the ALMA CO ν = 0, J = 2-1 and SiO ν = 0, J = 5-4 lines, which trace the gas density, and the DoLP, which traces the dust. Conclusions. The clumpiness of the DoLP and the lack of a consistent correlation between the gas and the dust location show that, in the inner environment, dust formation occurs at very specific sites. This has potential consequences for the derived mass-loss rates and dust-to-gas ratio in the inner region of the circumstellar environment. Except for π1 Gru and perhaps GY Aql, we do not detect interactions between the circumstellar wind and the hypothesized companions that shape the wind at larger scales. This suggests that the orbits of any other companions are tilted out of the plane of the sky.
  •  
24.
  • Ramstedt, Sofia, et al. (författare)
  • The wonderful complexity of the Mira AB system
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 570, s. Art. no. L14-
  • Tidskriftsartikel (refereegranskat)abstract
    • We have mapped the (CO)-C-12(3-2) line emission around the Mira AB system at 0 ''.5 resolution using the Atacama Large Millimeter/submillimeter Array (ALMA). The CO map shows amazing complexity. The circumstellar gas has been shaped by different dynamical actors during the evolution of the system, and several morphological components can be identified. The companion is marginally resolved in continuum emission and is currently at 0 ''.487 +/- 0 ''.006 separation. In the main line component, centered on the stellar velocity, spiral arcs around Mira A are found. The spiral appears to be relatively flat and oriented in the orbital plane. An accretion wake behind the companion is clearly visible, and the projected arc separation is about 5 ''. In the blue wing of the line emission, offset from the main line, several large (similar to 5-10 '') opposing arcs are found. We tentatively suggest that this structure is created by the wind of Mira B blowing a bubble in the expanding envelope of Mira A.
  •  
25.
  • Wallström, Sofia, 1988, et al. (författare)
  • ATOMIUM: Molecular inventory of 17 oxygen-rich evolved stars observed with ALMA
  • 2024
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 681
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The dusty winds of cool evolved stars are a major contributor of the newly synthesised material enriching the Galaxy and future generations of stars. However, the details of the physics and chemistry behind dust formation and wind launching have yet to be pinpointed. Recent spatially resolved observations show the importance of gaining a more comprehensive view of the circumstellar chemistry, but a comparative study of the intricate interplay between chemistry and physics is still difficult because observational details such as frequencies and angular resolutions are rarely comparable. Aims. Aiming to overcome these deficiencies, ATOMIUM is an ALMA Large Programme to study the physics and chemistry of the circumstellar envelopes of a diverse set of oxygen-rich evolved stars under homogeneous observing conditions at three angular resolutions between ∼0.02′1.4′. Here we summarize the molecular inventory of these sources, and the correlations between stellar parameters and molecular content. Methods. Seventeen oxygen-rich or S-Type asymptotic giant branch (AGB) and red supergiant (RSG) stars have been observed in several tunings with ALMA Band 6, targeting a range of molecules to probe the circumstellar envelope and especially the chemistry of dust formation close to the star. We systematically assigned the molecular carriers of the spectral lines and measured their spectroscopic parameters and the angular extent of the emission of each line from integrated intensity maps. Results. Across the ATOMIUM sample, we detect 291 transitions of 24 different molecules and their isotopologues. This includes several first detections in oxygen-rich AGB/RSG stars: PO v = 1, SO2 v1 = 1 and v2 = 2, and several high energy H2O transitions. We also find several first detections in S-Type AGB stars: vibrationally excited HCN v2 = 2,3 and SiS v = 4,5,6, as well as first detections of the molecules SiC, AlCl, and AlF in W Aql. Overall, we find strong correlations between the following molecular pairs: CS and SiS, CS and AlF, NaCl and KCl, AlO and SO, SO2 and SO, and SO2 and H2O; meaning both molecules tend to have more detected emission lines in the same sources. The measured isotopic ratios of Si and S are found to be consistent with previous measurements, except for an anomalously high 29Si/30Si ratio of 4 ± 1 in the RSG VX Sgr. Conclusions. This paper presents the overall molecular inventory and an initial analysis of the large ATOMIUM dataset, laying the groundwork for future work deriving molecular abundances and abundance profiles using radiative transfer modeling which will provide more rigorous tests for chemical models.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 42

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy