SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Laivuori H) "

Sökning: WFRF:(Laivuori H)

  • Resultat 1-25 av 80
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sliz, E., et al. (författare)
  • Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata
  • 2023
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Uterine leiomyomata (UL) are the most common tumours of the female genital tract and the primary cause of surgical removal of the uterus. Genetic factors contribute to UL susceptibility. To add understanding to the heritable genetic risk factors, we conduct a genome-wide association study (GWAS) of UL in up to 426,558 European women from FinnGen and a previous UL meta-GWAS. In addition to the 50 known UL loci, we identify 22 loci that have not been associated with UL in prior studies. UL-associated loci harbour genes enriched for development, growth, and cellular senescence. Of particular interest are the smooth muscle cell differentiation and proliferation-regulating genes functioning on the myocardin-cyclin dependent kinase inhibitor 1A pathway. Our results further suggest that genetic predisposition to increased fat-free mass may be causally related to higher UL risk, underscoring the involvement of altered muscle tissue biology in UL pathophysiology. Overall, our findings add to the understanding of the genetic pathways underlying UL, which may aid in developing novel therapeutics.
  •  
2.
  • Tabassum, R, et al. (författare)
  • Genetic architecture of human plasma lipidome and its link to cardiovascular disease
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 4329-
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding genetic architecture of plasma lipidome could provide better insights into lipid metabolism and its link to cardiovascular diseases (CVDs). Here, we perform genome-wide association analyses of 141 lipid species (n = 2,181 individuals), followed by phenome-wide scans with 25 CVD related phenotypes (n = 511,700 individuals). We identify 35 lipid-species-associated loci (P <5 ×10−8), 10 of which associate with CVD risk including five new loci-COL5A1, GLTPD2, SPTLC3, MBOAT7 and GALNT16 (false discovery rate<0.05). We identify loci for lipid species that are shown to predict CVD e.g., SPTLC3 for CER(d18:1/24:1). We show that lipoprotein lipase (LPL) may more efficiently hydrolyze medium length triacylglycerides (TAGs) than others. Polyunsaturated lipids have highest heritability and genetic correlations, suggesting considerable genetic regulation at fatty acids levels. We find low genetic correlations between traditional lipids and lipid species. Our results show that lipidomic profiles capture information beyond traditional lipids and identify genetic variants modifying lipid levels and risk of CVD.
  •  
3.
  •  
4.
  • Kurki, MI, et al. (författare)
  • FinnGen provides genetic insights from a well-phenotyped isolated population
  • 2023
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 613:7944, s. 508-
  • Tidskriftsartikel (refereegranskat)abstract
    • Population isolates such as those in Finland benefit genetic research because deleterious alleles are often concentrated on a small number of low-frequency variants (0.1% ≤ minor allele frequency < 5%). These variants survived the founding bottleneck rather than being distributed over a large number of ultrarare variants. Although this effect is well established in Mendelian genetics, its value in common disease genetics is less explored1,2. FinnGen aims to study the genome and national health register data of 500,000 Finnish individuals. Given the relatively high median age of participants (63 years) and the substantial fraction of hospital-based recruitment, FinnGen is enriched for disease end points. Here we analyse data from 224,737 participants from FinnGen and study 15 diseases that have previously been investigated in large genome-wide association studies (GWASs). We also include meta-analyses of biobank data from Estonia and the United Kingdom. We identified 30 new associations, primarily low-frequency variants, enriched in the Finnish population. A GWAS of 1,932 diseases also identified 2,733 genome-wide significant associations (893 phenome-wide significant (PWS), P < 2.6 × 10–11) at 2,496 (771 PWS) independent loci with 807 (247 PWS) end points. Among these, fine-mapping implicated 148 (73 PWS) coding variants associated with 83 (42 PWS) end points. Moreover, 91 (47 PWS) had an allele frequency of <5% in non-Finnish European individuals, of which 62 (32 PWS) were enriched by more than twofold in Finland. These findings demonstrate the power of bottlenecked populations to find entry points into the biology of common diseases through low-frequency, high impact variants.
  •  
5.
  • Czamara, D, et al. (författare)
  • Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 2548-
  • Tidskriftsartikel (refereegranskat)abstract
    • Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike’s information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease risk.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Wang, JW, et al. (författare)
  • Investigation of rare and low-frequency variants using high-throughput sequencing with pooled DNA samples
  • 2016
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6, s. 33256-
  • Tidskriftsartikel (refereegranskat)abstract
    • High-throughput sequencing using pooled DNA samples can facilitate genome-wide studies on rare and low-frequency variants in a large population. Some major questions concerning the pooling sequencing strategy are whether rare and low-frequency variants can be detected reliably, and whether estimated minor allele frequencies (MAFs) can represent the actual values obtained from individually genotyped samples. In this study, we evaluated MAF estimates using three variant detection tools with two sets of pooled whole exome sequencing (WES) and one set of pooled whole genome sequencing (WGS) data. Both GATK and Freebayes displayed high sensitivity, specificity and accuracy when detecting rare or low-frequency variants. For the WGS study, 56% of the low-frequency variants in Illumina array have identical MAFs and 26% have one allele difference between sequencing and individual genotyping data. The MAF estimates from WGS correlated well (r = 0.94) with those from Illumina arrays. The MAFs from the pooled WES data also showed high concordance (r = 0.88) with those from the individual genotyping data. In conclusion, the MAFs estimated from pooled DNA sequencing data reflect the MAFs in individually genotyped samples well. The pooling strategy can thus be a rapid and cost-effective approach for the initial screening in large-scale association studies.
  •  
11.
  • Kaartokallio, T, et al. (författare)
  • Exome sequencing in pooled DNA samples to identify maternal pre-eclampsia risk variants
  • 2016
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6, s. 29085-
  • Tidskriftsartikel (refereegranskat)abstract
    • Pre-eclampsia is a common pregnancy disorder that is a major cause for maternal and perinatal mortality and morbidity. Variants predisposing to pre-eclampsia might be under negative evolutionary selection that is likely to keep their population frequencies low. We exome sequenced samples from a hundred Finnish pre-eclamptic women in pools of ten to screen for low-frequency, large-effect risk variants for pre-eclampsia. After filtering and additional genotyping steps, we selected 28 low-frequency missense, nonsense and splice site variants that were enriched in the pre-eclampsia pools compared to reference data, and genotyped the variants in 1353 pre-eclamptic and 699 non-pre-eclamptic women to test the association of them with pre-eclampsia and quantitative traits relevant for the disease. Genotypes from the SISu project (n = 6118 exome sequenced Finnish samples) were included in the binary trait association analysis as a population reference to increase statistical power. In these analyses, none of the variants tested reached genome-wide significance. In conclusion, the genetic risk for pre-eclampsia is likely complex even in a population isolate like Finland, and larger sample sizes will be necessary to detect risk variants.
  •  
12.
  • Kaartokallio, T, et al. (författare)
  • Gene expression profiling of pre-eclamptic placentae by RNA sequencing
  • 2015
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5, s. 14107-
  • Tidskriftsartikel (refereegranskat)abstract
    • Pre-eclampsia is a common and complex pregnancy disorder that often involves impaired placental development. In order to identify altered gene expression in pre-eclamptic placenta, we sequenced placental transcriptomes of nine pre-eclamptic and nine healthy pregnant women in pools of three. The differential gene expression was tested both by including all the pools in the analysis and by excluding some of the pools based on phenotypic characteristics. From these analyses, we identified altogether 53 differently expressed genes, a subset of which was validated by qPCR in 20 cases and 19 controls. Furthermore, we conducted pathway and functional analyses which revealed disturbed vascular function and immunological balance in pre-eclamptic placenta. Some of the genes identified in our study have been reported by numerous microarray studies (BHLHE40, FSTL3, HK2, HTRA4, LEP, PVRL4, SASH1, SIGLEC6), but many have been implicated in only few studies or have not previously been linked to pre-eclampsia (ARMS2, BTNL9, CCSAP, DIO2, FER1L4, HPSE, LOC100129345, LYN, MYO7B, NCMAP, NDRG1, NRIP1, PLIN2, SBSPON, SERPINB9, SH3BP5, TET3, TPBG, ZNF175). Several of the molecules produced by these genes may have a role in the pathogenesis of pre-eclampsia and some could qualify as biomarkers for prediction or detection of this pregnancy complication.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  • Mustaniemi, S, et al. (författare)
  • Normal Gestational Weight Gain Protects From Large-for-Gestational-Age Birth Among Women With Obesity and Gestational Diabetes
  • 2021
  • Ingår i: Frontiers in public health. - : Frontiers Media SA. - 2296-2565. ; 9, s. 550860-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Pre-pregnancy obesity, excess gestational weight gain (GWG), and gestational diabetes (GDM) increase fetal growth. Our aim was to assess whether normal GWG is associated with lower risk for a large-for-gestational-age (LGA; over the 90th percentile of birth weight for sex and gestational age) infant and lower birth weight standard deviation (SD) score in the presence of GDM and maternal obesity.Methods: This multicenter case-control study is part of the Finnish Gestational Diabetes (FinnGeDi) Study and includes singleton pregnancies of 1,055 women with GDM and 1,032 non-diabetic controls. Women were divided into 12 subgroups according to their GDM status, pre-pregnancy body mass index (BMI; kg/m2), and GWG. Non-diabetic women with normal BMI and normal GWG (according to Institute of Medicine recommendations) served as a reference group.Results: The prevalence of LGA birth was 12.2% among women with GDM and 6.2% among non-diabetic women (p &lt; 0.001). Among all women, normal GWG was associated with lower odds of LGA [odds ratio (OR) 0.57, 95% CI: 0.41–0.78]. Among women with both obesity and GDM, the odds for giving birth to a LGA infant was 2.25-fold (95% CI: 1.04–4.85) among those with normal GWG and 7.63-fold (95% CI: 4.25–13.7) among those with excess GWG compared with the reference group. Compared with excess GWG, normal GWG was associated with 0.71 SD (95% CI: 0.47–0.97) lower birth weight SD score among women with GDM and obesity. Newborns of normal weight women with GDM and normal GWG had 0.28 SD (95% CI: 0.05–0.51) lower birth weight SD scores compared with their counterparts with excess GWG. In addition, in the group of normal weight non-diabetic women, normal GWG was associated with 0.46 SD (95% CI: 0.30–0.61) lower birth weight SD scores compared with excess GWG.Conclusion: GDM, obesity, and excess GWG are associated with higher risk for LGA infants. Interventions aiming at normal GWG have the potential to lower LGA rate and birth weight SD scores even when GDM and obesity are present.
  •  
23.
  •  
24.
  •  
25.
  • Steinthorsdottir, V, et al. (författare)
  • Genetic predisposition to hypertension is associated with preeclampsia in European and Central Asian women
  • 2020
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 5976-
  • Tidskriftsartikel (refereegranskat)abstract
    • Preeclampsia is a serious complication of pregnancy, affecting both maternal and fetal health. In genome-wide association meta-analysis of European and Central Asian mothers, we identify sequence variants that associate with preeclampsia in the maternal genome at ZNF831/20q13 and FTO/16q12. These are previously established variants for blood pressure (BP) and the FTO variant has also been associated with body mass index (BMI). Further analysis of BP variants establishes that variants at MECOM/3q26, FGF5/4q21 and SH2B3/12q24 also associate with preeclampsia through the maternal genome. We further show that a polygenic risk score for hypertension associates with preeclampsia. However, comparison with gestational hypertension indicates that additional factors modify the risk of preeclampsia.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 80

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy