SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leboyer Marion) "

Sökning: WFRF:(Leboyer Marion)

  • Resultat 1-25 av 65
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tabet, Anne-Claude, et al. (författare)
  • Complex nature of apparently balanced chromosomal rearrangements in patients with autism spectrum disorder.
  • 2015
  • Ingår i: Molecular autism. - : Springer Science and Business Media LLC. - 2040-2392. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Apparently balanced chromosomal rearrangements can be associated with an abnormal phenotype, including intellectual disability and autism spectrum disorder (ASD). Genome-wide microarrays reveal cryptic genomic imbalances, related or not to the breakpoints, in 25% to 50% of patients with an abnormal phenotype carrying a microscopically balanced chromosomal rearrangement. Here we performed microarray analysis of 18 patients with ASD carrying balanced chromosomal abnormalities to identify submicroscopic imbalances implicated in abnormal neurodevelopment. METHODS: Eighteen patients with ASD carrying apparently balanced chromosomal abnormalities were screened using single nucleotide polymorphism (SNP) arrays. Nine rearrangements were de novo, seven inherited, and two of unknown inheritance. Genomic imbalances were confirmed by fluorescence in situ hybridization and quantitative PCR. RESULTS: We detected clinically significant de novo copy number variants in four patients (22%), including three with de novo rearrangements and one with an inherited abnormality. The sizes ranged from 3.3 to 4.9 Mb; three were related to the breakpoint regions and one occurred elsewhere. We report a patient with a duplication of the Wolf-Hirschhorn syndrome critical region, contributing to the delineation of this rare genomic disorder. The patient has a chromosome 4p inverted duplication deletion, with a 0.5 Mb deletion of terminal 4p and a 4.2 Mb duplication of 4p16.2p16.3. The other cases included an apparently balanced de novo translocation t(5;18)(q12;p11.2) with a 4.2 Mb deletion at the 18p breakpoint, a subject with de novo pericentric inversion inv(11)(p14q23.2) in whom the array revealed a de novo 4.9 Mb deletion in 7q21.3q22.1, and a patient with a maternal inv(2)(q14.2q37.3) with a de novo 3.3 Mb terminal 2q deletion and a 4.2 Mb duplication at the proximal breakpoint. In addition, we identified a rare de novo deletion of unknown significance on a chromosome unrelated to the initial rearrangement, disrupting a single gene, RFX3. CONCLUSIONS: These findings underscore the utility of SNP arrays for investigating apparently balanced chromosomal abnormalities in subjects with ASD or related neurodevelopmental disorders in both clinical and research settings.
  •  
2.
  • Pinto, Dalila, et al. (författare)
  • Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders.
  • 2014
  • Ingår i: American journal of human genetics. - : Elsevier BV. - 1537-6605 .- 0002-9297. ; 94:5, s. 677-694
  • Tidskriftsartikel (refereegranskat)abstract
    • Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0× 10(-5)) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7× 10(-15), ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation.
  •  
3.
  • Pinto, Dalila, et al. (författare)
  • Functional impact of global rare copy number variation in autism spectrum disorders.
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 466:7304, s. 368-372
  • Tidskriftsartikel (refereegranskat)abstract
    • The autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in reciprocal social interaction and communication, and the presence of restricted and repetitive behaviours. Individuals with an ASD vary greatly in cognitive development, which can range from above average to intellectual disability. Although ASDs are known to be highly heritable ( approximately 90%), the underlying genetic determinants are still largely unknown. Here we analysed the genome-wide characteristics of rare (<1% frequency) copy number variation in ASD using dense genotyping arrays. When comparing 996 ASD individuals of European ancestry to 1,287 matched controls, cases were found to carry a higher global burden of rare, genic copy number variants (CNVs) (1.19 fold, P = 0.012), especially so for loci previously implicated in either ASD and/or intellectual disability (1.69 fold, P = 3.4 x 10(-4)). Among the CNVs there were numerous de novo and inherited events, sometimes in combination in a given family, implicating many novel ASD genes such as SHANK2, SYNGAP1, DLGAP2 and the X-linked DDX53-PTCHD1 locus. We also discovered an enrichment of CNVs disrupting functional gene sets involved in cellular proliferation, projection and motility, and GTPase/Ras signalling. Our results reveal many new genetic and functional targets in ASD that may lead to final connected pathways.
  •  
4.
  • Watson, Hunna J., et al. (författare)
  • Common Genetic Variation and Age of Onset of Anorexia Nervosa
  • 2022
  • Ingår i: BIOLOGICAL PSYCHIATRY: GLOBAL OPEN SCIENCE. - : Elsevier BV. - 2667-1743. ; 2:4, s. 368-378
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Genetics and biology may influence the age of onset of anorexia nervosa (AN). The aims of this study were to determine whether common genetic variation contributes to age of onset of AN and to investigate the genetic associations between age of onset of AN and age at menarche.METHODS: A secondary analysis of the Psychiatric Genomics Consortium genome-wide association study (GWAS) of AN was performed, which included 9335 cases and 31,981 screened controls, all from European ancestries. We conducted GWASs of age of onset, early-onset AN (,13 years), and typical-onset AN, and genetic correlation, genetic risk score, and Mendelian randomization analyses.RESULTS: Two loci were genome-wide significant in the typical-onset AN GWAS. Heritability estimates (single nucleotide polymorphism-h2) were 0.01-0.04 for age of onset, 0.16-0.25 for early-onset AN, and 0.17-0.25 for typical-onset AN. Early-and typical-onset AN showed distinct genetic correlation patterns with putative risk factors for AN. Specifically, early-onset AN was significantly genetically correlated with younger age at menarche, and typical-onset AN was significantly negatively genetically correlated with anthropometric traits. Genetic risk scores for age of onset and early-onset AN estimated from independent GWASs significantly predicted age of onset. Mendelian randomization analysis suggested a causal link between younger age at menarche and early -onset AN.CONCLUSIONS: Our results provide evidence consistent with a common variant genetic basis for age of onset and implicate biological pathways regulating menarche and reproduction.
  •  
5.
  • Amare, Azmeraw, et al. (författare)
  • Association of Polygenic Score and the involvement of Cholinergic and Glutamatergic Pathways with Lithium Treatment Response in Patients with Bipolar Disorder.
  • 2023
  • Ingår i: Research square. - : Research Square Platform LLC.
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental disorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores. In this study, we developed a polygenic score for lithium treatment response (Li+PGS) in patients with BD. To gain further insights into lithium's possible molecular mechanism of action, we performed a genome-wide gene-based analysis. Using polygenic score modeling, via methods incorporating Bayesian regression and continuous shrinkage priors, Li+PGS was developed in the International Consortium of Lithium Genetics cohort (ConLi+Gen: N=2,367) and replicated in the combined PsyCourse (N=89) and BipoLife (N=102) studies. The associations of Li+PGS and lithium treatment response - defined in a continuous ALDA scale and a categorical outcome (good response vs. poor response) were tested using regression models, each adjusted for the covariates: age, sex, and the first four genetic principal components. Statistical significance was determined at P<����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������.
  •  
6.
  • Amare, Azmeraw T, et al. (författare)
  • Association of polygenic score and the involvement of cholinergic and glutamatergic pathways with lithium treatment response in patients with bipolar disorder.
  • 2023
  • Ingår i: Molecular psychiatry. - 1476-5578. ; 28, s. 5251-5261
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental healthdisorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores. In this study, we developed a polygenic score for lithium treatment response (Li+PGS) in patients with BD. To gain further insights into lithium's possible molecular mechanism of action, we performed a genome-wide gene-based analysis. Using polygenic score modeling, via methods incorporating Bayesian regression and continuous shrinkage priors, Li+PGS was developed in the International Consortium of Lithium Genetics cohort (ConLi+Gen: N=2367) and replicated in the combined PsyCourse (N=89) and BipoLife (N=102) studies. The associations of Li+PGS and lithium treatment response - defined in a continuous ALDA scale and a categorical outcome (good response vs. poor response) were tested using regression models, each adjusted for the covariates: age, sex, and the first four genetic principal components. Statistical significance was determined at P<0.05. Li+PGS was positively associated with lithium treatment response in the ConLi+Gen cohort, in both the categorical (P=9.8×10-12, R2=1.9%) and continuous (P=6.4×10-9, R2=2.6%) outcomes. Compared to bipolar patients in the 1st decile of the risk distribution, individuals in the 10th decile had 3.47-fold (95%CI: 2.22-5.47) higher odds of responding favorably to lithium. The results were replicated in the independent cohorts for the categorical treatment outcome (P=3.9×10-4, R2=0.9%), but not for the continuous outcome (P=0.13). Gene-based analyses revealed 36 candidate genes that are enriched in biological pathways controlled by glutamate and acetylcholine. Li+PGS may be useful in the development of pharmacogenomic testing strategies by enabling a classification of bipolar patients according to their response to treatment.
  •  
7.
  • Amare, Azmeraw T, et al. (författare)
  • Association of Polygenic Score for Schizophrenia and HLA Antigen and Inflammation Genes With Response to Lithium in Bipolar Affective Disorder: A Genome-Wide Association Study.
  • 2018
  • Ingår i: JAMA psychiatry. - : American Medical Association (AMA). - 2168-6238 .- 2168-622X. ; 75:1, s. 65-74
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium is a first-line mood stabilizer for the treatment of bipolar affective disorder (BPAD). However, the efficacy of lithium varies widely, with a nonresponse rate of up to 30%. Biological response markers are lacking. Genetic factors are thought to mediate treatment response to lithium, and there is a previously reported genetic overlap between BPAD and schizophrenia (SCZ).To test whether a polygenic score for SCZ is associated with treatment response to lithium in BPAD and to explore the potential molecular underpinnings of this association.A total of 2586 patients with BPAD who had undergone lithium treatment were genotyped and assessed for long-term response to treatment between 2008 and 2013. Weighted SCZ polygenic scores were computed at different P value thresholds using summary statistics from an international multicenter genome-wide association study (GWAS) of 36989 individuals with SCZ and genotype data from patients with BPAD from the Consortium on Lithium Genetics. For functional exploration, a cross-trait meta-GWAS and pathway analysis was performed, combining GWAS summary statistics on SCZ and response to treatment with lithium. Data analysis was performed from September 2016 to February 2017.Treatment response to lithium was defined on both the categorical and continuous scales using the Retrospective Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder score. The effect measures include odds ratios and the proportion of variance explained.Of the 2586 patients in the study (mean [SD] age, 47.2 [13.9] years), 1478 were women and 1108 were men. The polygenic score for SCZ was inversely associated with lithium treatment response in the categorical outcome, at a threshold P<5×10-2. Patients with BPAD who had a low polygenic load for SCZ responded better to lithium, with odds ratios for lithium response ranging from 3.46 (95% CI, 1.42-8.41) at the first decile to 2.03 (95% CI, 0.86-4.81) at the ninth decile, compared with the patients in the 10th decile of SCZ risk. In the cross-trait meta-GWAS, 15 genetic loci that may have overlapping effects on lithium treatment response and susceptibility to SCZ were identified. Functional pathway and network analysis of these loci point to the HLA antigen complex and inflammatory cytokines.This study provides evidence for a negative association between high genetic loading for SCZ and poor response to lithium in patients with BPAD. These results suggest the potential for translational research aimed at personalized prescribing of lithium.
  •  
8.
  • Anney, Richard, et al. (författare)
  • A genome-wide scan for common alleles affecting risk for autism.
  • 2010
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 19:20, s. 4072-4082
  • Tidskriftsartikel (refereegranskat)abstract
    • Although autism spectrum disorders (ASDs) have a substantial genetic basis, most of the known genetic risk has been traced to rare variants, principally copy number variants (CNVs). To identify common risk variation, the Autism Genome Project (AGP) Consortium genotyped 1558 rigorously defined ASD families for 1 million single-nucleotide polymorphisms (SNPs) and analyzed these SNP genotypes for association with ASD. In one of four primary association analyses, the association signal for marker rs4141463, located within MACROD2, crossed the genome-wide association significance threshold of P < 5 × 10(-8). When a smaller replication sample was analyzed, the risk allele at rs4141463 was again over-transmitted; yet, consistent with the winner's curse, its effect size in the replication sample was much smaller; and, for the combined samples, the association signal barely fell below the P < 5 × 10(-8) threshold. Exploratory analyses of phenotypic subtypes yielded no significant associations after correction for multiple testing. They did, however, yield strong signals within several genes, KIAA0564, PLD5, POU6F2, ST8SIA2 and TAF1C.
  •  
9.
  • Anney, Richard, et al. (författare)
  • Individual common variants exert weak effects on the risk for autism spectrum disorders.
  • 2012
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 21:21, s. 4781-92
  • Tidskriftsartikel (refereegranskat)abstract
    • While it is apparent that rare variation can play an important role in the genetic architecture of autism spectrum disorders (ASD), the contribution of common variation to ASD risk is less clear. To produce a more comprehensive picture, we report Stage 2 of the Autism Genome Project genome-wide association study, adding 1301 ASD families and bringing the total to 2705 families analysed (Stages 1 and 2). In addition to evaluating association of individual SNPs, we also sought evidence that common variants, en masse, might affect risk. Despite genotyping over a million SNPs covering the genome, no single SNP shows significant association with ASD or selected phenotypes at a genome-wide level. The SNP that achieves the smallest p-value from secondary analyses is rs1718101. It falls in CNTNAP2, a gene previously implicated in susceptibility for ASD. This SNP also shows modest association with age of word/phrase acquisition in ASD subjects, of interest because features of language development are also associated with other variation in CNTNAP2. By contrast, allele-scores derived from the transmission of common alleles to Stage 1 cases significantly predict case-status in the independent Stage 2 sample. Despite being significant, the variance explained by these allele scores was small (Vm< 1%). Based on results from individual SNPs and their en masse effect on risk, as inferred from the allele-score results, it is reasonable to conclude that common variants affect ASD risk but their individual effects are modest.
  •  
10.
  • Beggiato, Anita, et al. (författare)
  • Gender differences in autism spectrum disorders: Divergence among specific core symptoms.
  • 2017
  • Ingår i: Autism research : official journal of the International Society for Autism Research. - : Wiley. - 1939-3806 .- 1939-3792. ; 10:4, s. 680-689
  • Tidskriftsartikel (refereegranskat)abstract
    • Community-based studies have consistently shown a sex ratio heavily skewed towards males in autism spectrum disorders (ASD). The factors underlying this predominance of males are largely unknown, but the way girls score on standardized categorical diagnostic tools might account for the underrecognition of ASD in girls. Despite the existence of different norms for boys and girls with ASD on several major screening tests, the algorithm of the Autism Diagnosis Interview-Revised (ADI-R) has not been reformulated. The aim of our study was to investigate which ADI-R items discriminate between males and females, and to evaluate their weighting in the final diagnosis of autism. We then conducted discriminant analysis (DA) on a sample of 594 probands including 129 females with ASD, recruited by the Paris Autism Research International Sibpair (PARIS) Study. A replication analysis was run on an independent sample of 1716 probands including 338 females with ASD, recruited through the Autism Genetics Resource Exchange (AGRE) program. Entering the raw scores for all ADI-R items as independent variables, the DA correctly classified 78.9% of males and 72.9% of females (P<0.001) in the PARIS cohort, and 72.2% of males and 68.3% of females (P<0.0001) in the AGRE cohort. Among the items extracted by the stepwise DA, four belonged to the ADI-R algorithm used for the final diagnosis of ASD. In conclusion, several items of the ADI-R that are taken into account in the diagnosis of autism significantly differentiates between males and females. The potential gender bias thus induced may participate in the underestimation of the prevalence of ASD in females. Autism Res 2016,. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
  •  
11.
  •  
12.
  • Betancur, Catalina, et al. (författare)
  • Serotonin transporter gene polymorphisms and hyperserotonemia in autistic disorder
  • 2002
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 7:1, s. 67-71
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies have provided conflicting evidence regarding the association of the serotonin transporter (5-HTT) gene with autism. Two polymorphisms have been identified in the human 5-HTT gene, a VNTR in intron 21 and a functional deletion/insertion in the promoter region (5-HTTLPR) with short and long variants.2 Positive associations of the 5-HTTLPR polymorphism with autism have been reported by two family-based studies, but one found preferential transmission of the short allele3 and the other of the long allele.4 Two subsequent studies failed to find evidence of transmission disequilibrium at the 5-HTTLPR locus.5,6 These conflicting results could be due to heterogeneity of clinical samples with regard to serotonin (5-HT) blood levels, which have been found to be elevated in some autistic subjects.7–9 Thus, we examined the association of the 5-HTTLPR and VNTR polymorphisms of the 5-HTT gene with autism, and we investigated the relationship between 5-HTT variants and whole-blood 5-HT. The transmission/disequilibrium test (TDT) revealed no linkage disequilibrium at either loci in a sample of 96 families comprising 43 trios and 53 sib pairs. Furthermore, no significant relationship between 5-HT blood levels and 5-HTT gene polymorphisms was found. Our results suggest that the 5-HTT gene is unlikely to play a major role as a susceptibility factor in autism.
  •  
13.
  • Buxbaum, Joseph. D., et al. (författare)
  • Mutation analysis of the NSD1 gene in patients with autism spectrum disorders and macrocephaly.
  • 2007
  • Ingår i: BMC Medical Genetics. - : Springer Science and Business Media LLC. - 1471-2350. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: BACKGROUND: Sotos syndrome is an overgrowth syndrome characterized by macrocephaly, advanced bone age, characteristic facial features, and learning disabilities, caused by mutations or deletions of the NSD1 gene, located at 5q35. Sotos syndrome has been described in a number of patients with autism spectrum disorders, suggesting that NSD1 could be involved in other cases of autism and macrocephaly. METHODS: We screened the NSD1 gene for mutations and deletions in 88 patients with autism spectrum disorders and macrocephaly (head circumference 2 standard deviations or more above the mean). Mutation analysis was performed by direct sequencing of all exons and flanking regions. Dosage analysis of NSD1 was carried out using multiplex ligation-dependent probe amplification. RESULTS: We identified three missense variants (R604L, S822C and E1499G) in one patient each, but none is within a functional domain. In addition, segregation analysis showed that all variants were inherited from healthy parents and in two cases were also present in unaffected siblings, indicating that they are probably nonpathogenic. No partial or whole gene deletions/duplications were observed. CONCLUSIONS: Our findings suggest that Sotos syndrome is a rare cause of autism spectrum disorders and that screening for NSD1 mutations and deletions in patients with autism and macrocephaly is not warranted in the absence of other features of Sotos syndrome.
  •  
14.
  • Buxbaum, Joseph D, et al. (författare)
  • Mutation screening of the PTEN gene in patients with autism spectrum disorders and macrocephaly.
  • 2007
  • Ingår i: American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics. - : Wiley. - 1552-4841 .- 1552-485X. ; 144B:4, s. 484-491
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in the PTEN gene are associated with a broad spectrum of disorders, including Cowden syndrome (CS), Bannayan-Riley-Ruvalcaba syndrome, Proteus syndrome, and Lhermitte-Duclos disease. In addition, PTEN mutations have been described in a few patients with autism spectrum disorders (ASDs) and macrocephaly. In this study, we screened the PTEN gene for mutations and deletions in 88 patients with ASDs and macrocephaly (defined as >or=2 SD above the mean). Mutation analysis was performed by direct sequencing of all exons and flanking regions, as well as the promoter region. Dosage analysis of PTEN was carried out using multiplex ligation-dependent probe amplification (MLPA). No partial or whole gene deletions were observed. We identified a de novo missense mutation (D326N) in a highly conserved amino acid in a 5-year-old boy with autism, mental retardation, language delay, extreme macrocephaly (+9.6 SD) and polydactyly of both feet. Polydactyly has previously been described in two patients with Lhermitte-Duclos disease and CS and is thus likely to be a rare sign of PTEN mutations. Our findings suggest that PTEN mutations are a relatively infrequent cause of ASDs with macrocephaly. Screening of PTEN mutations is warranted in patients with autism and pronounced macrocephaly, even in the absence of other features of PTEN-related tumor syndromes.
  •  
15.
  • Casey, Jillian P, et al. (författare)
  • A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder.
  • 2012
  • Ingår i: Human Genetics. - : Springer Science and Business Media LLC. - 0340-6717 .- 1432-1203. ; 131:4, s. 565-579
  • Tidskriftsartikel (refereegranskat)abstract
    • Autism spectrum disorder (ASD) is a highly heritable disorder of complex and heterogeneous aetiology. It is primarily characterized by altered cognitive ability including impaired language and communication skills and fundamental deficits in social reciprocity. Despite some notable successes in neuropsychiatric genetics, overall, the high heritability of ASD (~90%) remains poorly explained by common genetic risk variants. However, recent studies suggest that rare genomic variation, in particular copy number variation, may account for a significant proportion of the genetic basis of ASD. We present a large scale analysis to identify candidate genes which may contain low-frequency recessive variation contributing to ASD while taking into account the potential contribution of population differences to the genetic heterogeneity of ASD. Our strategy, homozygous haplotype (HH) mapping, aims to detect homozygous segments of identical haplotype structure that are shared at a higher frequency amongst ASD patients compared to parental controls. The analysis was performed on 1,402 Autism Genome Project trios genotyped for 1 million single nucleotide polymorphisms (SNPs). We identified 25 known and 1,218 novel ASD candidate genes in the discovery analysis including CADM2, ABHD14A, CHRFAM7A, GRIK2, GRM3, EPHA3, FGF10, KCND2, PDZK1, IMMP2L and FOXP2. Furthermore, 10 of the previously reported ASD genes and 300 of the novel candidates identified in the discovery analysis were replicated in an independent sample of 1,182 trios. Our results demonstrate that regions of HH are significantly enriched for previously reported ASD candidate genes and the observed association is independent of gene size (odds ratio 2.10). Our findings highlight the applicability of HH mapping in complex disorders such as ASD and offer an alternative approach to the analysis of genome-wide association data.
  •  
16.
  •  
17.
  • Chang, Hong, et al. (författare)
  • Identification of a Bipolar Disorder Vulnerable Gene CHDH at 3p21.1.
  • 2017
  • Ingår i: Molecular neurobiology. - : Springer Science and Business Media LLC. - 1559-1182 .- 0893-7648. ; 54:7, s. 5166-5176
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide analysis (GWA) is an effective strategy to discover extreme effects surpassing genome-wide significant levels in studying complex disorders; however, when sample size is limited, the true effects may fail to achieve genome-wide significance. In such case, there may be authentic results among the pools of nominal candidates, and an alternative approach is to consider nominal candidates but are replicable across different samples. Here, we found that mRNA expression of the choline dehydrogenase gene (CHDH) was uniformly upregulated in the brains of bipolar disorder (BPD) patients compared with healthy controls across different studies. Follow-up genetic analyses of CHDH variants in multiple independent clinical datasets (including 11,564 cases and 17,686 controls) identified a risk SNP rs9836592 showing consistent associations with BPD (P meta=5.72×10(-4)), and the risk allele indicated an increased CHDH expression in multiple neuronal tissues (lowest P=6.70×10(-16)). These converging results may identify a nominal but true BPD susceptibility gene CHDH. Further exploratory analysis revealed suggestive associations of rs9836592 with childhood intelligence (P=0.044) and educational attainment (P=0.0039), a "proxy phenotype" of general cognitive abilities. Intriguingly, the CHDH gene is located at chromosome 3p21.1, a risk region implicated in previous BPD genome-wide association studies (GWAS), but CHDH is lying outside of the core GWAS linkage disequilibrium (LD) region, and our studied SNP rs9836592 is ∼1.2Mb 3' downstream of the previous GWAS loci (e.g., rs2251219) with no LD between them; thus, the association observed here is unlikely a reflection of previous GWAS signals. In summary, our results imply that CHDH may play a previously unknown role in the etiology of BPD and also highlight the informative value of integrating gene expression and genetic code in advancing our understanding of its biological basis.
  •  
18.
  • Chaste, Pauline, et al. (författare)
  • Genetic variations of the melatonin pathway in patients with attention-deficit and hyperactivity disorders.
  • 2011
  • Ingår i: Journal of Pineal Research. - 0742-3098 .- 1600-079X. ; 51:4, s. 394-399
  • Tidskriftsartikel (refereegranskat)abstract
    • Melatonin is a powerful antioxidant and a synchronizer of many physiological processes. Alteration in melatonin signaling has been reported in a broad range of diseases, but little is known about the genetic variability of this pathway in humans. Here, we sequenced all the genes of the melatonin pathway -AA-NAT, ASMT, MTNR1A, MTNR1B and GPR50 - in 321 individuals from Sweden including 101 patients with attention-deficit/hyperactivity disorder (ADHD) and 220 controls from the general population. We could find several damaging mutations in patients with ADHD, but no significant enrichment compared with the general population. Among these variations, we found a splice site mutation in ASMT (IVS5+2T>C) and one stop mutation in MTNR1A (Y170X) - detected exclusively in patients with ADHD - for which biochemical analyses indicated that they abolish the activity of ASMT and MTNR1A. These genetic and functional results represent the first comprehensive ascertainment of melatonin signaling deficiency in ADHD.
  •  
19.
  • Chaste, Pauline, et al. (författare)
  • Identification of pathway-biased and deleterious melatonin receptor mutants in autism spectrum disorders and in the general population.
  • 2010
  • Ingår i: PloS One. - : Public Library of Science (PLoS). - 1932-6203. ; 5:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Melatonin is a powerful antioxidant and a synchronizer of many physiological processes. Alteration of the melatonin pathway has been reported in circadian disorders, diabetes and autism spectrum disorders (ASD). However, very little is known about the genetic variability of melatonin receptors in humans. Here, we sequenced the melatonin receptor MTNR1A and MTNR1B, genes coding for MT1 and MT2 receptors, respectively, in a large panel of 941 individuals including 295 patients with ASD, 362 controls and 284 individuals from different ethnic backgrounds. We also sequenced GPR50, coding for the orphan melatonin-related receptor GPR50 in patients and controls. We identified six non-synonymous mutations for MTNR1A and ten for MTNR1B. The majority of these variations altered receptor function. Particularly interesting mutants are MT1-I49N, which is devoid of any melatonin binding and cell surface expression, and MT1-G166E and MT1-I212T, which showed severely impaired cell surface expression. Of note, several mutants possessed pathway-selective signaling properties, some preferentially inhibiting the adenylyl cyclase pathway, others preferentially activating the MAPK pathway. The prevalence of these deleterious mutations in cases and controls indicates that they do not represent major risk factor for ASD (MTNR1A case 3.6% vs controls 4.4%; MTNR1B case 4.7% vs 3% controls). Concerning GPR50, we detected a significant association between ASD and two variations, Delta502-505 and T532A, in affected males, but it did not hold up after Bonferonni correction for multiple testing. Our results represent the first functional ascertainment of melatonin receptors in humans and constitute a basis for future structure-function studies and for interpreting genetic data on the melatonin pathway in patients.
  •  
20.
  • Chaste, Pauline, et al. (författare)
  • Mutation screening of the ARX gene in patients with autism.
  • 2007
  • Ingår i: American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics. - : Wiley. - 1552-4841 .- 1552-485X. ; 144B:2, s. 228-230
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in the Aristaless related homeobox (ARX) gene are associated with a broad spectrum of disorders, including nonsyndromic X-linked mental retardation, sometimes associated with epilepsy, as well as syndromic forms with brain abnormalities and abnormal genitalia. Furthermore, ARX mutations have been described in a few patients with autism or autistic features. In this study, we screened the ARX gene in 226 male patients with autism spectrum disorders and mental retardation; 42 of the patients had epilepsy. The mutation analysis was performed by direct sequencing of all exons and flanking regions. No ARX mutations were identified in any of the patients tested. These findings indicate that mutations in the ARX gene are very rare in autism.
  •  
21.
  • Coombes, Brandon J, et al. (författare)
  • Association of Attention-Deficit/Hyperactivity Disorder and Depression Polygenic Scores with Lithium Response: A Consortium for Lithium Genetics Study.
  • 2021
  • Ingår i: Complex psychiatry. - : S. Karger AG. - 2673-3005 .- 2673-298X. ; 7:3-4, s. 80-89
  • Tidskriftsartikel (refereegranskat)abstract
    • Response to lithium varies widely between individuals with bipolar disorder (BD). Polygenic risk scores (PRSs) can uncover pharmacogenomics effects and may help predict drug response. Patients (N = 2,510) with BD were assessed for long-term lithium response in the Consortium on Lithium Genetics using the Retrospective Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder score. PRSs for attention-deficit/hyperactivity disorder (ADHD), major depressive disorder (MDD), and schizophrenia (SCZ) were computed using lassosum and in a model including all three PRSs and other covariates, and the PRS of ADHD (β = -0.14; 95% confidence interval [CI]: -0.24 to -0.03; p value = 0.010) and MDD (β = -0.16; 95% CI: -0.27 to -0.04; p value = 0.005) predicted worse quantitative lithium response. A higher SCZ PRS was associated with higher rates of medication nonadherence (OR = 1.61; 95% CI: 1.34-1.93; p value = 2e-7). This study indicates that genetic risk for ADHD and depression may influence lithium treatment response. Interestingly, a higher SCZ PRS was associated with poor adherence, which can negatively impact treatment response. Incorporating genetic risk of ADHD, depression, and SCZ in combination with clinical risk may lead to better clinical care for patients with BD.
  •  
22.
  • de Girolamo, Giovanni, et al. (författare)
  • Medical comorbidities in bipolar disorder (BIPCOM) : clinical validation of risk factors and biomarkers to improve prevention and treatment. Study protocol.
  • 2024
  • Ingår i: International journal of bipolar disorders. - : Springer. - 2194-7511. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: BIPCOM aims to (1) identify medical comorbidities in people with bipolar disorder (BD); (2) examine risk factors and clinical profiles of Medical Comorbidities (MC) in this clinical group, with a special focus on Metabolic Syndrome (MetS); (3) develop a Clinical Support Tool (CST) for the personalized management of BD and medical comorbidities.METHODS: The BIPCOM project aims to investigate MC, specifically MetS, in individuals with BD using various approaches. Initially, prevalence rates, characteristics, genetic and non-genetic risk factors, and the natural progression of MetS among individuals with BD will be assessed by analysing Nordic registers, biobanks, and existing patient datasets from 11 European recruiting centres across 5 countries. Subsequently, a clinical study involving 400 participants from these sites will be conducted to examine the clinical profiles and incidence of specific MetS risk factors over 1 year. Baseline assessments, 1-year follow-ups, biomarker analyses, and physical activity measurements with wearable biosensors, and focus groups will be performed. Using this comprehensive data, a CST will be developed to enhance the prevention, early detection, and personalized treatment of MC in BD, by incorporating clinical, biological, sex and genetic information. This protocol will highlight the study's methodology.DISCUSSION: BIPCOM's data collection will pave the way for tailored treatment and prevention approaches for individuals with BD. This approach has the potential to generate significant healthcare savings by preventing complications, hospitalizations, and emergency visits related to comorbidities and cardiovascular risks in BD. BIPCOM's data collection will enhance BD patient care through personalized strategies, resulting in improved quality of life and reduced costly interventions. The findings of the study will contribute to a better understanding of the relationship between medical comorbidities and BD, enabling accurate prediction and effective management of MetS and cardiovascular diseases.TRIAL REGISTRATION: ISRCTN68010602 at https://www.isrctn.com/ISRCTN68010602 . Registration date: 18/04/2023.
  •  
23.
  • de Pierrefeu, Amicie, et al. (författare)
  • Identifying a neuroanatomical signature of schizophrenia, reproducible across sites and stages, using machine-learning with structured sparsity
  • 2018
  • Ingår i: Acta Psychiatrica Scandinavica. - : John Wiley & Sons. - 0001-690X .- 1600-0447. ; 138, s. 571-580
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectiveStructural MRI (sMRI) increasingly offers insight into abnormalities inherent to schizophrenia. Previous machine learning applications suggest that individual classification is feasible and reliable and, however, is focused on the predictive performance of the clinical status in cross‐sectional designs, which has limited biological perspectives. Moreover, most studies depend on relatively small cohorts or single recruiting site. Finally, no study controlled for disease stage or medication's effect. These elements cast doubt on previous findings’ reproducibility.MethodWe propose a machine learning algorithm that provides an interpretable brain signature. Using large datasets collected from 4 sites (276 schizophrenia patients, 330 controls), we assessed cross‐site prediction reproducibility and associated predictive signature. For the first time, we evaluated the predictive signature regarding medication and illness duration using an independent dataset of first‐episode patients.ResultsMachine learning classifiers based on neuroanatomical features yield significant intersite prediction accuracies (72%) together with an excellent predictive signature stability. This signature provides a neural score significantly correlated with symptom severity and the extent of cognitive impairments. Moreover, this signature demonstrates its efficiency on first‐episode psychosis patients (73% accuracy).ConclusionThese results highlight the existence of a common neuroanatomical signature for schizophrenia, shared by a majority of patients even from an early stage of the disorder.
  •  
24.
  • De Pierrefeu, Amicie, et al. (författare)
  • Interpretable and stable prediction of schizophrenia on a large multisite dataset using machine learning with structured sparsity
  • 2018
  • Ingår i: 2018 International Workshop on Pattern Recognition in Neuroimaging (PRNI). - : IEEE. - 9781538668597
  • Konferensbidrag (refereegranskat)abstract
    • The use of machine-learning (ML) in neuroimaging offers new perspectives in early diagnosis and prognosis of brain diseases. Indeed, ML algorithms can jointly examine all brain features to capture complex relationships in the data in order to make inferences at a single-subject level. To deal with such high dimensional input and the associated risk of overfitting on the training data, a proper regularization (or feature selection) is required. Standard ℓ2-regularized predictors, such as Support Vector Machine, provide dense patterns of predictors. However, in the context of predictive disease signature discovery, it is now essential to understand the brain pattern that underpins the prediction. Despite ℓ1-regularized (sparse) has often been advocated as leading to more interpretable models, they generally lead to scattered and unstable patterns. We hypothesize that the integration of prior knowledge regarding the structure of the input images should improve the relevance and the stability of the predictive signature. Such structured sparsity can be obtained by combining together ℓ1 (possibly ℓ2) and Total variation (TV) penalties. We demonstrated the relevance of using ML with structured sparsity on a large multisite dataset of schizophrenia patients and controls. Using 3D maps of grey matter density, we obtained promising inter-site prediction performances. More importantly, we have uncovered a predictive signature of schizophrenia that is clinically interpretable and stable across resampling. This suggests that structured sparsity provides a major breakthrough over 'off-The-shelf' algorithms to perform a robust selection of important brain regions in the context of biomarkers discovery.
  •  
25.
  • Delorme, Richard, et al. (författare)
  • Mutation screening of NOS1AP gene in a large sample of psychiatric patients and controls.
  • 2010
  • Ingår i: BMC Medical Genetics. - : Springer Science and Business Media LLC. - 1471-2350. ; 11:1:108
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The gene encoding carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase (NOS1AP) is located on chromosome 1q23.3, a candidate region for schizophrenia, autism spectrum disorders (ASD) and obsessive-compulsive disorder (OCD). Previous genetic and functional studies explored the role of NOS1AP in these psychiatric conditions, but only a limited number explored the sequence variability of NOS1AP. METHODS: We analyzed the coding sequence of NOS1AP in a large population (n = 280), including patients with schizophrenia (n = 72), ASD (n = 81) or OCD (n = 34), and in healthy volunteers controlled for the absence of personal or familial history of psychiatric disorders (n = 93). RESULTS: Two non-synonymous variations, V37I and D423N were identified in two families, one with two siblings with OCD and the other with two brothers with ASD. These rare variations apparently segregate with the presence of psychiatric conditions. CONCLUSIONS: Coding variations of NOS1AP are relatively rare in patients and controls. Nevertheless, we report the first non-synonymous variations within the human NOS1AP gene that warrant further genetic and functional investigations to ascertain their roles in the susceptibility to psychiatric disorders.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 65
Typ av publikation
tidskriftsartikel (58)
annan publikation (4)
forskningsöversikt (2)
konferensbidrag (1)
Typ av innehåll
refereegranskat (61)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Leboyer, Marion (65)
Gillberg, Christophe ... (43)
Jamain, Stéphane (20)
Råstam, Maria, 1948 (18)
Forstner, Andreas J (17)
Landén, Mikael, 1966 (16)
visa fler...
Bellivier, Frank (16)
Cichon, Sven (16)
Grigoroiu-Serbanescu ... (16)
Hauser, Joanna (16)
Alda, Martin (15)
Anckarsäter, Henrik, ... (15)
Hoffmann, Per (15)
Degenhardt, Franzisk ... (14)
Gillberg, I Carina, ... (13)
Monteleone, Palmiero (13)
Rouleau, Guy A. (13)
Etain, Bruno (13)
Herms, Stefan (13)
Kahn, Jean-Pierre (13)
Tortorella, Alfonso (13)
Mitchell, Philip B (12)
Vieta, Eduard (12)
Lavebratt, Catharina (12)
Schalling, Martin (12)
Heilbronner, Urs (12)
Hou, Liping (12)
Shekhtman, Tatyana (12)
Adli, Mazda (12)
Akula, Nirmala (12)
Ardau, Raffaella (12)
Arias, Bárbara (12)
Aubry, Jean-Michel (12)
Backlund, Lena (12)
Bengesser, Susanne (12)
Cervantes, Pablo (12)
Chillotti, Caterina (12)
Cruceanu, Cristiana (12)
Falkai, Peter (12)
Frisén, Louise (12)
Gard, Sébastien (12)
Jiménez, Esther (12)
Kassem, Layla (12)
Kuo, Po-Hsiu (12)
Kittel-Schneider, Sa ... (12)
Laje, Gonzalo (12)
Manchia, Mirko (12)
Martinsson, Lina (12)
Colom, Francesc (12)
Mitjans, Marina (12)
visa färre...
Lärosäte
Göteborgs universitet (59)
Karolinska Institutet (20)
Lunds universitet (17)
Umeå universitet (5)
Uppsala universitet (2)
Örebro universitet (1)
Språk
Engelska (65)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (63)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy