SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lehtinen K.E.J.) "

Sökning: WFRF:(Lehtinen K.E.J.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, C., et al. (författare)
  • MATCH-SALSA - Multi-scale Atmospheric Transport and CHemistry model coupled to the SALSA aerosol microphysics model - Part 1: Model description and evaluation
  • 2015
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 8:2, s. 171-189
  • Tidskriftsartikel (refereegranskat)abstract
    • © Author(s) 2015. We have implemented the sectional aerosol dynamics model SALSA (Sectional Aerosol module for Large Scale Applications) in the European-scale chemistry-transport model MATCH (Multi-scale Atmospheric Transport and Chemistry). The new model is called MATCH-SALSA. It includes aerosol microphysics, with several formulations for nucleation, wet scavenging and condensation. The model reproduces observed higher particle number concentration (PNC) in central Europe and lower concentrations in remote regions. The modeled PNC size distribution peak occurs at the same or smaller particle size as the observed peak at four measurement sites spread across Europe. Total PNC is underestimated at northern and central European sites and accumulation-mode PNC is underestimated at all investigated sites. The low nucleation rate coefficient used in this study is an important reason for the underestimation. On the other hand, the model performs well for particle mass (including secondary inorganic aerosol components), while elemental and organic carbon concentrations are underestimated at many of the sites. Further development is needed, primarily for treatment of secondary organic aerosol, in terms of biogenic emissions and chemical transformation. Updating the biogenic secondary organic aerosol (SOA) scheme will likely have a large impact on modeled PM2.5 and also affect the model performance for PNC through impacts on nucleation and condensation.
  •  
2.
  • Kim, J., et al. (författare)
  • Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments
  • 2016
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:1, s. 293-304
  • Tidskriftsartikel (refereegranskat)abstract
    • Sulfuric acid, amines and oxidized organics have been found to be important compounds in the nucleation and initial growth of atmospheric particles. Because of the challenges involved in determining the chemical composition of objects with very small mass, however, the properties of the freshly nucleated particles and the detailed pathways of their formation processes are still not clear. In this study,we focus on a challenging size range, i.e., particles that have grown to diameters of 10 and 15 nm following nucleation, and measure their water uptake. Water uptake is useful information for indirectly obtaining chemical composition of aerosol particles. We use a nanometer-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) at sub-saturated conditions (ca. 90% relative humidity at 293 K) to measure the hygroscopicity of particles during the seventh Cosmics Leaving OUtdoor Droplets (CLOUD7) campaign performed at CERN in 2012. In CLOUD7, the hygroscopicity of nucleated nanoparticles was measured in the presence of sulfuric acid, sulfuric acid-dimethylamine, and sulfuric acid-organics derived from alpha-pinene oxidation. The hygroscopicity parameter kappa decreased with increasing particle size, indicating decreasing acidity of particles. No clear effect of the sulfuric acid concentration on the hygroscopicity of 10 nm particles produced from sulfuric acid and dimethylamine was observed, whereas the hygroscopicity of 15 nm particles sharply decreased with decreasing sulfuric acid concentrations. In particular, when the concentration of sulfuric acid was 5.1 x 10(6) molecules cm(-3) in the gas phase, and the dimethylamine mixing ratio was 11.8 ppt, the measured kappa of 15 nm particles was 0.31 +/- 0.01: close to the value reported for dimethylaminium sulfate (DMAS) (kappa(DMAS) similar to 0.28). Furthermore, the difference in kappa between sulfuric acid and sulfuric acid-dimethylamine experiments increased with increasing particle size. The kappa values of particles in the presence of sulfuric acid and organics were much smaller than those of particles in the presence of sulfuric acid and dimethylamine. This suggests that the organics produced from alpha-pinene ozonolysis play a significant role in particle growth even at 10 nm sizes.
  •  
3.
  • Kulmala, M., et al. (författare)
  • General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) - integrating aerosol research from nano to global scales
  • 2011
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:24, s. 13061-13143
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan-European aerosol emissions inventory was developed and evaluated, a new cluster spectrometer was built and tested in the field and several new aerosol parameterizations and computations modules for chemical transport and global climate models were developed and evaluated. These achievements and related studies have substantially improved our understanding and reduced the uncertainties of aerosol radiative forcing and air quality-climate interactions. The EUCAARI results can be utilized in European and global environmental policy to assess the aerosol impacts and the corresponding abatement strategies.
  •  
4.
  •  
5.
  •  
6.
  • Laaksonen, A., et al. (författare)
  • The role of VOC oxidation products in continental new particle formation
  • 2008
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8:10, s. 2657-2665
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosol physical and chemical properties and trace gas concentrations were measured during the QUEST field campaign in March-April 2003, in Hyytiala, Finland. Our aim was to understand the role of oxidation products of VOC's such as mono- and sesquiterpenes in atmospheric nucleation events. Particle chemical compositions were measured using the Aerodyne Aerosol Mass Spectrometer, and chemical compositions of aerosol samples collected with low-pressure impactors and a high volume sampler were analysed using a number of techniques. The results indicate that during and after new particle formation, all particles larger than 50 nm in diameter contained similar organic substances that are likely to be mono- and sesquiterpene oxidation products. The oxidation products identified in the high volume samples were shown to be mostly aldehydes. In order to study the composition of particles in the 10-50 nm range, we made use of Tandem Differential Mobility Analyzer results. We found that during nucleation events, both 10 and 50 nm particle growth factors due to uptake of ethanol vapour correlate strongly with gas-phase monoterpene oxidation product (MTOP) concentrations, indicating that the organic constituents of particles smaller than 50 nm in diameter are at least partly similar to those of larger particles. We furthermore showed that particle growth rates during the nucleation events are correlated with the gas-phase MTOP concentrations. This indicates that VOC oxidation products may have a key role in determining the spatial and temporal features of the nucleation events. This conclusion was supported by our aircraft measurements of new 3-10 nm particle concentrations, which showed that the nucleation event on 28 March 2003, started at the ground layer, i.e. near the VOC source, and evolved together with the mixed layer. Furthermore, no new particle formation was detected upwind away from the forest, above the frozen Gulf of Bothnia.
  •  
7.
  • Ramonet, M., et al. (författare)
  • The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO 2 measurements : Atmospheric CO 2 anomaly
  • 2020
  • Ingår i: Philosophical Transactions of the Royal Society B: Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 375:1810
  • Tidskriftsartikel (refereegranskat)abstract
    • During the summer of 2018, a widespread drought developed over Northern and Central Europe. The increase in temperature and the reduction of soil moisture have influenced carbon dioxide (CO 2) exchange between the atmosphere and terrestrial ecosystems in various ways, such as a reduction of photosynthesis, changes in ecosystem respiration, or allowing more frequent fires. In this study, we characterize the resulting perturbation of the atmospheric CO 2 seasonal cycles. 2018 has a good coverage of European regions affected by drought, allowing the investigation of how ecosystem flux anomalies impacted spatial CO 2 gradients between stations. This density of stations is unprecedented compared to previous drought events in 2003 and 2015, particularly thanks to the deployment of the Integrated Carbon Observation System (ICOS) network of atmospheric greenhouse gas monitoring stations in recent years. Seasonal CO 2 cycles from 48 European stations were available for 2017 and 2018. Earlier data were retrieved for comparison from international databases or national networks. Here, we show that the usual summer minimum in CO 2 due to the surface carbon uptake was reduced by 1.4 ppm in 2018 for the 10 stations located in the area most affected by the temperature anomaly, mostly in Northern Europe. Notwithstanding, the CO 2 transition phases before and after July were slower in 2018 compared to 2017, suggesting an extension of the growing season, with either continued CO 2 uptake by photosynthesis and/or a reduction in respiration driven by the depletion of substrate for respiration inherited from the previous months due to the drought. For stations with sufficiently long time series, the CO 2 anomaly observed in 2018 was compared to previous European droughts in 2003 and 2015. Considering the areas most affected by the temperature anomalies, we found a higher CO 2 anomaly in 2003 (+3 ppm averaged over 4 sites), and a smaller anomaly in 2015 (+1 ppm averaged over 11 sites) compared to 2018. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.
  •  
8.
  • Roldin, Pontus, et al. (författare)
  • Development and evaluation of the aerosol dynamics and gas phase chemistry model ADCHEM
  • 2011
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7324. ; 11:12, s. 5867-5896
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this work was to develop a model suited for detailed studies of aerosol dynamics, gas and particle phase chemistry within urban plumes, from local scale (1x1 km(2)) to regional scale. This article describes and evaluates the trajectory model for Aerosol Dynamics, gas and particle phase CHEMistry and radiative transfer (AD-CHEM). The model treats both vertical and horizontal dispersion perpendicular to an air mass trajectory (2-space dimensions). The Lagrangian approach enables a more detailed representation of the aerosol dynamics, gas and particle phase chemistry and a finer spatial and temporal resolution compared to that of available regional 3D-CTMs. These features make it among others well suited for urban plume studies. The aerosol dynamics model includes Brownian coagulation, dry deposition, wet deposition, in-cloud processing, condensation, evaporation, primary particle emissions and homogeneous nucleation. The organic mass partitioning was either modeled with a 2-dimensional volatility basis set (2D-VBS) or with the traditional two-product model approach. In ADCHEM these models consider the diffusion limited and particle size dependent condensation and evaporation of 110 and 40 different organic compounds respectively. The gas phase chemistry model calculates the gas phase concentrations of 61 different species, using 130 different chemical reactions. Daily isoprene and monoterpene emissions from European forests were simulated separately with the vegetation model LPJ-GUESS, and included as in-put to ADCHEM. ADCHEM was used to simulate the ageing of the urban plumes from the city of Malmo in southern Sweden (280 000 inhabitants). Several sensitivity tests were performed concerning the number of size bins, size structure method, aerosol dynamic processes, vertical and horizontal mixing, coupled or uncoupled condensation and the secondary organic aerosol formation. The simulations show that the full-stationary size structure gives accurate results with little numerical diffusion when more than 50 size bins are used between 1.5 and 2500 nm, while the moving-center method is preferable when only a few size bins are selected. The particle number size distribution in the center of the urban plume from Malmo was mainly affected by dry deposition, coagulation and vertical dilution. The modeled PM2.5 mass was dominated by organic material, nitrate, sulfate and ammonium. If the condensation of HNO3 and NH3 was treated as a coupled process (pH independent) the model gave lower nitrate PM2.5 mass than if considering uncoupled condensation. Although the time of ageing from that SOA precursors are emitted until condensable products are formed is substantially different with the 2D-VBS and two product model, the models gave similar total organic mass concentrations.
  •  
9.
  • Vuollekoski, H., et al. (författare)
  • A numerical comparison of different methods for determining the particle formation rate
  • 2012
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 12:5, s. 2289-2295
  • Tidskriftsartikel (refereegranskat)abstract
    • Different methods of determining formation rates of 3 nm particles are compared, basing on analysis of simulated data, but the results are valid for analyses of experimental particle size distribution data as well, at least within the accuracy of the applied model. The study shows that the method of determining formation rates indirectly from measured number concentration data of 3-6 nm particles is generally in good agreement with the theoretical calculation with a systematic error of 0-20%. While this accuracy is often enough, a simple modification to the approximative equation for the formation rate is recommended. A brief study on real atmospheric data implied that in some cases the accuracy gain may be significant.
  •  
10.
  • Vuollekoski, H., et al. (författare)
  • MECCO : A method to estimate concentrations of condensing organics-Description and evaluation of a Markov chain Monte Carlo application
  • 2010
  • Ingår i: Journal of Aerosol Science. - : Elsevier BV. - 0021-8502 .- 1879-1964. ; 41:12, s. 1080-1089
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of a new method to estimate concentrations of condensing organics (MECCO) is described. A Markov chain Monte Carlo method is applied, and by using measured particle size distribution and random vapor concentrations as input, the predicted changes in particle population by an aerosol dynamics model are utilized. The method provides the ambient vapor concentrations required for the observed particle growth in particle number size distribution data, assuming all growth can be attributed to net condensation of super-saturated vapors. In this paper, MECCO was coupled with the UHMA box-model to provide aerosol dynamics. With few changes, MECCO could be applied to study other input parameters, and coupled with other dynamics models as well. Evaluation of the method was carried out with simulated output from the UHMA model using the assumption of three organic vapors, and MECCO-UHMA was able to estimate their concentrations with great accuracy. However, the condensation of vapors is currently considered irreversible, since the used particle size distribution data do not provide information on the composition of particles. The distinguishing between the vapors is based on few vapor parameters, which limits the possibilities of identifying actual vapors. An example of atmospheric application is also presented. This revealed the importance of quality control of the input particle concentrations: instrumental noise and changes in the observed air mass pose challenges for the presented method. Data need to be smoothed in a reasonable way so that the point-like measurements can be utilized, but also so that the important information on particle growth is conserved. MECCO is a useful tool to approximate vapor concentrations and may be applied to estimate vapor properties as well. However, a computationally efficient and physically accurate aerosol dynamics model is essential for MECCO's performance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy