SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lembrechts Jonas J.) "

Sökning: WFRF:(Lembrechts Jonas J.)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Björkman, Anne, 1981, et al. (författare)
  • Tundra Trait Team: A database of plant traits spanning the tundra biome
  • 2018
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 27:12, s. 1402-1411
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2018 The Authors Global Ecology and Biogeography Published by John Wiley & Sons Ltd Motivation: The Tundra Trait Team (TTT) database includes field-based measurements of key traits related to plant form and function at multiple sites across the tundra biome. This dataset can be used to address theoretical questions about plant strategy and trade-offs, trait–environment relationships and environmental filtering, and trait variation across spatial scales, to validate satellite data, and to inform Earth system model parameters. Main types of variable contained: The database contains 91,970 measurements of 18 plant traits. The most frequently measured traits (>1,000 observations each) include plant height, leaf area, specific leaf area, leaf fresh and dry mass, leaf dry matter content, leaf nitrogen, carbon and phosphorus content, leaf C:N and N:P, seed mass, and stem specific density. Spatial location and grain: Measurements were collected in tundra habitats in both the Northern and Southern Hemispheres, including Arctic sites in Alaska, Canada, Greenland, Fennoscandia and Siberia, alpine sites in the European Alps, Colorado Rockies, Caucasus, Ural Mountains, Pyrenees, Australian Alps, and Central Otago Mountains (New Zealand), and sub-Antarctic Marion Island. More than 99% of observations are georeferenced. Time period and grain: All data were collected between 1964 and 2018. A small number of sites have repeated trait measurements at two or more time periods. Major taxa and level of measurement: Trait measurements were made on 978 terrestrial vascular plant species growing in tundra habitats. Most observations are on individuals (86%), while the remainder represent plot or site means or maximums per species. Software format: csv file and GitHub repository with data cleaning scripts in R; contribution to TRY plant trait database (www.try-db.org) to be included in the next version release.
  •  
2.
  • Lembrechts, Jonas J., et al. (författare)
  • SoilTemp : A global database of near-surface temperature
  • 2020
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26:11, s. 6616-6629
  • Tidskriftsartikel (refereegranskat)abstract
    • Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
  •  
3.
  • Lembrechts, Jonas J., et al. (författare)
  • Global maps of soil temperature
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:9, s. 3110-3144
  • Tidskriftsartikel (refereegranskat)abstract
    • Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean=3.0±2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6±2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7±2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
  •  
4.
  • Lembrechts, Jonas J., et al. (författare)
  • Mountain roads shift native and non-native plant species' ranges
  • 2017
  • Ingår i: Ecography. - : Wiley. - 0906-7590 .- 1600-0587. ; 40:3, s. 353-364
  • Tidskriftsartikel (refereegranskat)abstract
    • Roads are known to act as corridors for dispersal of plant species. With their variable microclimate, role as corridors for species movement and reoccurring disturbance events, they show several characteristics that might influence range dynamics of both native and non-native species. Previous research on plant species ranges in mountains however seldom included the effects of roads. To study how ranges of native and non-native species differ between roads and adjacent vegetation, we used a global dataset of plant species composition along mountain roads. We compared average elevation and range width of species, and used generalized linear mixed models (GLMMs) to compile their range optimum and amplitude. We then explored differences between roadside and adjacent plots based on a species' origin (native vs non-native) and nitrogen and temperature affinity. Most non-native species had on average higher elevational ranges and broader amplitudes in roadsides. Higher optima for non-native species were associated with high nitrogen and temperature affinity. While lowland native species showed patterns comparable to those in non-native species, highland native species had significantly lower elevational ranges in roadsides compared to the adjacent vegetation. We conclude that roadsides indeed change the elevational ranges of a variety of species. These changes are not limited to the expansion of non-native species along mountain roads, but also include both upward and downward changes in ranges of native species. Roadsides may thus facilitate upward range shifts, for instance related to climate change, and they could serve as corridors to facilitate migration of alpine species between adjacent high-elevation areas. We recommend including the effects of mountain roads in species distribution models to fine-tune the predictions of range changes in a warming climate.
  •  
5.
  • Sarneel, Judith M., et al. (författare)
  • Reading tea leaves worldwide : decoupled drivers of initial litter decomposition mass-loss rate and stabilization
  • 2024
  • Ingår i: Ecology Letters. - : John Wiley & Sons. - 1461-023X .- 1461-0248. ; 27:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.
  •  
6.
  • Haesen, Stef, et al. (författare)
  • ForestClim : Bioclimatic variables for microclimate temperatures of European forests
  • 2023
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 29:11, s. 2886-2892
  • Tidskriftsartikel (refereegranskat)abstract
    • Microclimate research gained renewed interest over the last decade and its importance for many ecological processes is increasingly being recognized. Consequently, the call for high-resolution microclimatic temperature grids across broad spatial extents is becoming more pressing to improve ecological models. Here, we provide a new set of open-access bioclimatic variables for microclimate temperatures of European forests at 25 x 25 m2 resolution.
  •  
7.
  • De Frenne, Pieter, et al. (författare)
  • Forest microclimates and climate change : Importance, drivers and future research agenda
  • 2021
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 27:11, s. 2279-2297
  • Forskningsöversikt (refereegranskat)abstract
    • Forest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited. Here, we review how spatial and temporal variation in forest microclimates result from an interplay of forest features, local water balance, topography and landscape composition. We first stress and exemplify the importance of considering forest microclimates to understand variation in biodiversity and ecosystem functions across forest landscapes. Next, we explain how macroclimate warming (of the free atmosphere) can affect microclimates, and vice versa, via interactions with land-use changes across different biomes. Finally, we perform a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions of forest microclimates; and (3) the impacts of microclimate on forest biodiversity and ecosystem functioning in the face of climate change. The availability of microclimatic data will significantly increase in the coming decades, characterizing climate variability at unprecedented spatial and temporal scales relevant to biological processes in forests. This will revolutionize our understanding of the dynamics, drivers and implications of forest microclimates on biodiversity and ecological functions, and the impacts of global changes. In order to support the sustainable use of forests and to secure their biodiversity and ecosystem services for future generations, microclimates cannot be ignored.
  •  
8.
  • Hostens, Lore, et al. (författare)
  • The drivers of dark diversity in the Scandinavian mountains are metric-dependent
  • 2023
  • Ingår i: Journal of Vegetation Science. - : John Wiley & Sons. - 1100-9233 .- 1654-1103. ; 34:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Question: Dark diversity refers to the set of species that are not observed in an area but could potentially occur based on suitable local environmental conditions. In this paper, we applied both niche-based and co-occurrence-based methods to estimate the dark diversity of vascular plant species in the subarctic mountains. We then aimed to unravel the drivers explaining (a) why some locations were missing relatively more suitable species than others, and (b) why certain plant species were more often absent from suitable locations than others.Location: The Scandinavian mountains around Abisko, northern Sweden.Methods: We calculated the dark diversity in 107 plots spread out across four mountain trails using four different methods: two co-occurrence-based (Beals’ index and the hypergeometric method) and two niche-based (the climatic niche model and climatic niche model followed by species-specific threshold). We then applied multiple Generalized Linear Mixed-Effects Models and General Linear Models to determine which habitat characteristics and species traits contributed the most to dark diversity.Results: The study showed a notable divergence in the predicted drivers of dark diversity depending on the method used. Nevertheless, we can conclude that plot-level dark diversity was generally 17% higher in areas at low elevations and 31% higher in areas with a low species richness.Conclusion: Our findings call for caution when interpreting statistical findings of dark-diversity estimates. Even so, all analyses point toward an important role for natural processes such as competitive dominance as the main driver of the spatial patterns found in dark diversity in the northern Scandes.
  •  
9.
  • Kemppinen, Julia, et al. (författare)
  • Microclimate, an important part of ecology and biogeography
  • 2024
  • Ingår i: GLOBAL ECOLOGY AND BIOGEOGRAPHY. - 1466-822X .- 1466-8238. ; 33:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Brief introduction: What are microclimates and why are they important?Microclimate science has developed into a global discipline. Microclimate science is increasingly used to understand and mitigate climate and biodiversity shifts. Here, we provide an overview of the current status of microclimate ecology and biogeography in terrestrial ecosystems, and where this field is heading next.Microclimate investigations in ecology and biogeographyWe highlight the latest research on interactions between microclimates and organisms, including how microclimates influence individuals, and through them populations, communities and entire ecosystems and their processes. We also briefly discuss recent research on how organisms shape microclimates from the tropics to the poles.Microclimate applications in ecosystem managementMicroclimates are also important in ecosystem management under climate change. We showcase new research in microclimate management with examples from biodiversity conservation, forestry and urban ecology. We discuss the importance of microrefugia in conservation and how to promote microclimate heterogeneity.Methods for microclimate scienceWe showcase the recent advances in data acquisition, such as novel field sensors and remote sensing methods. We discuss microclimate modelling, mapping and data processing, including accessibility of modelling tools, advantages of mechanistic and statistical modelling and solutions for computational challenges that have pushed the state-of-the-art of the field.What's next?We identify major knowledge gaps that need to be filled for further advancing microclimate investigations, applications and methods. These gaps include spatiotemporal scaling of microclimate data, mismatches between macroclimate and microclimate in predicting responses of organisms to climate change, and the need for more evidence on the outcomes of microclimate management.
  •  
10.
  • Lembrechts, Jonas J., et al. (författare)
  • Alien Roadside Species More Easily Invade Alpine than Lowland Plant Communities in a Subarctic Mountain Ecosystem
  • 2014
  • Ingår i: PLOS ONE. - San Francisco : Public Library of Science. - 1932-6203. ; 9:2, s. e89664-
  • Tidskriftsartikel (refereegranskat)abstract
    • Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment.
  •  
11.
  • Lembrechts, Jonas J., et al. (författare)
  • Comparing temperature data sources for use in species distribution models : From in-situ logging to remote sensing
  • 2019
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 28:11, s. 1578-1596
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim Although species distribution models (SDMs) traditionally link species occurrences to free-air temperature data at coarse spatio-temporal resolution, the distribution of organisms might instead be driven by temperatures more proximal to their habitats. Several solutions are currently available, such as downscaled or interpolated coarse-grained free-air temperatures, satellite-measured land surface temperatures (LST) or in-situ-measured soil temperatures. A comprehensive comparison of temperature data sources and their performance in SDMs is, however, currently lacking. Location Northern Scandinavia. Time period 1970-2017. Major taxa studied Higher plants. Methods We evaluated different sources of temperature data (WorldClim, CHELSA, MODIS, E-OBS, topoclimate and soil temperature from miniature data loggers), differing in spatial resolution (from 1 '' to 0.1 degrees), measurement focus (free-air, ground-surface or soil temperature) and temporal extent (year-long versus long-term averages), and used them to fit SDMs for 50 plant species with different growth forms in a high-latitudinal mountain region. Results Differences between these temperature data sources originating from measurement focus and temporal extent overshadow the effects of temporal climatic differences and spatio-temporal resolution, with elevational lapse rates ranging from -0.6 degrees C per 100 m for long-term free-air temperature data to -0.2 degrees C per 100 m for in-situ soil temperatures. Most importantly, we found that the performance of the temperature data in SDMs depended on the growth forms of species. The use of in-situ soil temperatures improved the explanatory power of our SDMs (R-2 on average +16%), especially for forbs and graminoids (R-2 +24 and +21% on average, respectively) compared with the other data sources. Main conclusions We suggest that future studies using SDMs should use the temperature dataset that best reflects the ecology of the species, rather than automatically using coarse-grained data from WorldClim or CHELSA.
  •  
12.
  • Lembrechts, Jonas J., et al. (författare)
  • Trade-off between competition and facilitation defines gap colonization in mountains
  • 2015
  • Ingår i: AoB Plants. - : Oxford University Press (OUP). - 2041-2851. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent experimental observations show that gap colonization in small-stature (e.g. grassland and dwarf shrubs) vegetation strongly depends on the abiotic conditions within them. At the same time, within-gap variation in biotic interactions such as competition and facilitation, caused by distance to the gap edge, would affect colonizer performance, but a theoretical framework to explore such patterns is missing. Here, we model how competition, facilitation and environmental conditions together determine the small-scale patterns of gap colonization along a cold gradient in mountains, by simulating colonizer survival in gaps of various sizes. Our model adds another dimension to the known effects of biotic interactions along a stress gradient by focussing on the trade-off between competition and facilitation in the within-gap environment. We show that this trade-off defines a peak in colonizer survival at a specific distance from the gap edge, which progressively shifts closer to the edge as the environment gets colder, ultimately leaving a large fraction of gaps unsuitable for colonization in facilitation-dominated systems. This is reinforced when vegetation size and temperature amelioration are manipulated simultaneously with temperature in order to simulate an elevational gradient more realistically. Interestingly, all other conditions being equal, the magnitude of the realized survival peak was always lower in large than in small gaps, making large gaps harder to colonize. The model is relevant to predict effects of non-native plant invasions and climate warming on colonization processes in mountains.
  •  
13.
  • Wiegmans, Dymphna, et al. (författare)
  • Historic disturbance events overruled climatic factors as drivers of ruderal species distributions in the Scandinavian mountains
  • 2024
  • Ingår i: Nordic Journal of Botany. - : John Wiley & Sons. - 0107-055X .- 1756-1051.
  • Tidskriftsartikel (refereegranskat)abstract
    • The contemporary interaction of climate and disturbance drives vegetation composition and species distribution shifts, making their respective roles difficult to disentangle. This study describes the long-term ruderal plant species distributions along the ‘Rallarvägen' in Abisko, subarctic Sweden. This trail currently serves as a hiking trail but was initially created as a construction road for a railroad from 1898 to 1903 and is paralleled by the E10 Highway since 1982. Using vegetation and climate data from 1903, 1913, 1983, and 2021, we found that warm-adapted ruderal plant species were common along the Rallarvägen shortly after railroad construction in the early 20th century. Interestingly, many of these native and non-native ruderals with relatively high temperature affinity that were present in 1903 and 1913 have since disappeared and have not reappeared, despite the substantial increase in regional temperature in recent decades. In addition, the historical disturbances have had long-lasting effects on the current spatial distribution of the ruderal vegetation. Most ruderals still reside close to the railroad tracks and are progressively filtered out with increasing distance from anthropogenically disturbed introductory points, such as train stations, where they peak in species richness – a process we term ‘horizontal directional ecological filtering', in parallel to the established concept of ‘directional ecological filtering' along elevational gradients. The historical record of ruderal plant species in the region, influenced by a century-old railroad construction, emphasizes the importance of knowing a system's disturbance history for understanding current vegetation dynamics and anticipating its future in a changing climate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13
Typ av publikation
tidskriftsartikel (12)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (13)
Författare/redaktör
Lembrechts, Jonas J. (13)
Lenoir, Jonathan (8)
Aalto, Juha (6)
Milbau, Ann (6)
Luoto, Miska (5)
De Frenne, Pieter (5)
visa fler...
Hylander, Kristoffer (4)
Alatalo, Juha M. (4)
Vangansbeke, Pieter (4)
Van Meerbeek, Koenra ... (4)
Carbognani, Michele (4)
Haider, Sylvia (4)
Merinero, Sonia (3)
Larson, Keith (3)
Björk, Robert G., 19 ... (3)
Smith, Stuart W. (3)
Buchmann, Nina (3)
Myers-Smith, Isla H. (3)
Thomas, Haydn J.D. (3)
Petraglia, Alessandr ... (3)
Tomaselli, Marcello (3)
Scheffers, Brett R. (3)
Dorrepaal, Ellen (2)
Ardö, Jonas (2)
Montagnani, Leonardo (2)
Michelsen, Anders (2)
Alexander, Jake M. (2)
Sarneel, Judith M. (2)
Vandvik, Vigdis (2)
Boeckx, Pascal (2)
Jucker, Tommaso (2)
Arriga, Nicola (2)
Björkman, Mats P., 1 ... (2)
Barrio, Isabel C. (2)
Björnsdóttir, Katrín (2)
Boike, Julia (2)
Normand, Signe (2)
Wilmking, Martin (2)
Bauters, Marijn (2)
Walz, Josefine (2)
Jiménez-Alfaro, Borj ... (2)
Benito Alonso, José ... (2)
Dolezal, Jiri (2)
Rixen, Christian (2)
Wipf, Sonja (2)
Cooper, Elisabeth J. (2)
Frei, Esther R. (2)
Onipchenko, Vladimir ... (2)
Blonder, Benjamin (2)
Kreyling, Juergen (2)
visa färre...
Lärosäte
Umeå universitet (9)
Stockholms universitet (6)
Göteborgs universitet (4)
Sveriges Lantbruksuniversitet (3)
Lunds universitet (2)
Linnéuniversitetet (1)
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (13)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy