SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Levin Ingeborg) "

Sökning: WFRF:(Levin Ingeborg)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergamaschi, Peter, et al. (författare)
  • European Obspack compilation of atmospheric carbon dioxide data from ICOS and non-ICOS European stations for the period 1972-2023; : obspack_co2_466_GLOBALVIEWplus_v8.0_2023-04-26
  • 2023
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • This data package contains high accuracy CO2 dry air mole fractions from 58 ICOS and non-ICOS European observatories at in total 132 observation levels, collected by the ICOS Atmosphere Thematic Centre (ATC) and provided by the station contributors. The package is part of the Globalviewplus v8.0 data product, released in 2022 and is intended for use in carbon cycle inverse modeling, model evaluation, and satellite validation studies. Please report errors and send comments regarding this product to the ObsPack originators. Please read carefully the ObsPack Fair Use statement and cite appropriately. This is the sixth release of the GLOBALVIEWplus (GV+) cooperative data product. Please review the release notes for this product at www.esrl.noaa.gov/gmd/ccgg/obspack/release_notes.html. Metadata for this product are available at https://commons.datacite.org/doi.org/10.18160/CEC4-CAGK. Please visit http://www.gml.noaa.gov/ccgg/obspack/ for more information.
  •  
2.
  • Bergamaschi, Peter, et al. (författare)
  • Inverse modelling of European CH4 emissions during 2006–2012 using different inverse models and reassessed atmospheric observations
  • 2018
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7324. ; 18:2, s. 901-920
  • Tidskriftsartikel (refereegranskat)abstract
    • We present inverse modelling (top down) estimates of European methane (CH4) emissions for 2006–2012 based on a new quality-controlled and harmonised in situ data set from 18 European atmospheric monitoring stations. We applied an ensemble of seven inverse models and performed four inversion experiments, investigating the impact of different sets of stations and the use of a priori information on emissions. The inverse models infer total CH4 emissions of 26.8 (20.2–29.7) Tg CH4 yr−1 (mean, 10th and 90th percentiles from all inversions) for the EU-28 for 2006–2012 from the four inversion experiments. For comparison, total anthropogenic CH4 emissions reported to UNFCCC (bottom up, based on statistical data and emissions factors) amount to only 21.3 Tg CH4 yr−1 (2006) to 18.8 Tg CH4 yr−1 (2012). A potential explanation for the higher range of top-down estimates compared to bottom-up inventories could be the contribution from natural sources, such as peatlands, wetlands, and wet soils. Based on seven different wetland inventories from the Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP), total wetland emissions of 4.3 (2.3–8.2) Tg CH4 yr−1 from the EU-28 are estimated. The hypothesis of significant natural emissions is supported by the finding that several inverse models yield significant seasonal cycles of derived CH4 emissions with maxima in summer, while anthropogenic CH4 emissions are assumed to have much lower seasonal variability. Taking into account the wetland emissions from the WETCHIMP ensemble, the top-down estimates are broadly consistent with the sum of anthropogenic and natural bottom-up inventories. However, the contribution of natural sources and their regional distribution remain rather uncertain. Furthermore, we investigate potential biases in the inverse models by comparison with regular aircraft profiles at four European sites and with vertical profiles obtained during the Infrastructure for Measurement of the European Carbon Cycle (IMECC) aircraft campaign. We present a novel approach to estimate the biases in the derived emissions, based on the comparison of simulated and measured enhancements of CH4 compared to the background, integrated over the entire boundary layer and over the lower troposphere. The estimated average regional biases range between −40 and 20 % at the aircraft profile sites in France, Hungary and Poland.
  •  
3.
  • Heiskanen, Jouni, et al. (författare)
  • The Integrated Carbon Observation System in Europe
  • 2022
  • Ingår i: Bulletin of the American Meteorological Society. - 0003-0007. ; 103:3, s. 855-872
  • Tidskriftsartikel (refereegranskat)abstract
    • Since 1750, land-use change and fossil fuel combustion has led to a 46% increase in the atmospheric carbon dioxide (CO2) concentrations, causing global warming with substantial societal consequences. The Paris Agreement aims to limit global temperature increases to well below 2C above preindustrial levels. Increasing levels of CO2 and other greenhouse gases (GHGs), such as methane (CH4) and nitrous oxide (N2O), in the atmosphere are the primary cause of climate change. Approximately half of the carbon emissions to the atmosphere are sequestered by ocean and land sinks, leading to ocean acidification but also slowing the rate of global warming. However, there are significant uncertainties in the future global warming scenarios due to uncertainties in the size, nature, and stability of these sinks. Quantifying and monitoring the size and timing of natural sinks and the impact of climate change on ecosystems are important information to guide policy-makers' decisions and strategies on reductions in emissions. Continuous, long-term observations are required to quantify GHG emissions, sinks, and their impacts on Earth systems. The Integrated Carbon Observation System (ICOS) was designed as the European in situ observation and information system to support science and society in their efforts to mitigate climate change. It provides standardized and open data currently from over 140 measurement stations across 12 European countries. The stations observe GHG concentrations in the atmosphere and carbon and GHG fluxes between the atmosphere, land surface, and the oceans. This article describes how ICOS fulfills its mission to harmonize these observations, ensure the related long-term financial commitments, provide easy access to well-documented and reproducible high-quality data and related protocols and tools for scientific studies, and deliver information and GHG-related products to stakeholders in society and policy.
  •  
4.
  • Levin, Ingeborg, et al. (författare)
  • A dedicated flask sampling strategy developed for Integrated Carbon Observation System (ICOS) stations based on CO2 and CO measurements and Stochastic Time-Inverted Lagrangian Transport (STILT) footprint modelling
  • 2020
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:18, s. 11161-11180
  • Tidskriftsartikel (refereegranskat)abstract
    • In situ CO2 and CO measurements from five Integrated Carbon Observation System (ICOS) atmosphere stations have been analysed together with footprint model runs from the regional Stochastic Time-Inverted Lagrangian Transport (STILT) model to develop a dedicated strategy for flask sampling with an automated sampler. Flask sampling in ICOS has three different purposes, namely (1) to provide an independent quality control for in situ observations, (2) to provide representative information on atmospheric components currently not monitored in situ at the stations, and (3) to collect samples for 14CO2 analysis that are significantly influenced by fossil fuel CO2 ( ffCO2 ) emission areas. Based on the existing data and experimental results obtained at the Heidelberg pilot station with a prototype flask sampler, we suggest that single flask samples are collected regularly every third day around noon or in the afternoon from the highest level of a tower station. Air samples shall be collected over 1 h, with equal temporal weighting, to obtain a true hourly mean. At all stations studied, more than 50 % of flasks collected around midday will likely be sampled during low ambient variability ( <0.5 parts per million (ppm) standard deviation of 1 min values). Based on a first application at the Hohenpeißenberg ICOS site, such flask data are principally suitable for detecting CO2 concentration biases larger than 0.1 ppm with a 1 σ confidence level between flask and in situ observations from only five flask comparisons. In order to have a maximum chance to also sample ffCO2 emission areas, additional flasks are collected on all other days in the afternoon. To check if the ffCO2 component will indeed be large in these samples, we use the continuous in situ CO observations. The CO deviation from an estimated background value is determined the day after each flask sampling, and depending on this offset, an automated decision is made as to whether a flask shall be retained for 14CO2 analysis. It turned out that, based on existing data, ffCO2 events of more than 4-5 ppm that would allow ffCO2 estimates with an uncertainty below 30 % were very rare at all stations studied, particularly in summer (only zero to five events per month from May to August). During the other seasons, events could be collected more frequently. The strategy developed in this project is currently being implemented at the ICOS stations.
  •  
5.
  • Levin, Ingeborg, et al. (författare)
  • Assessment of 222radon progeny loss in long tubing based on static filter measurements in the laboratory and in the field
  • 2017
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-8548. ; 10:4, s. 1313-1321
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosol loss in air intake systems potentially hampers the application of one-filter systems for progeny-based atmospheric 222radon (222Rn) measurements. The artefacts are significant when air has to be collected via long sampling lines, e.g. from elevated heights at tall tower observatories. Here we present results from a study, determining 222Rn progeny loss from ambient air sampled via 8.2 mm inner diameter (ID) Decabon tubing in the laboratory and from pre-installed 10 mm ID tubing at the Cabauw meteorological tower in the Netherlands. Progeny loss increased steeply with length of the tubing, decreasing sampling efficiency to 66 % for 8.2 mm ID rolled-up tubing of 200 m length at a flow rate of ca. 1 m3 h−1. Preliminary theoretical estimation of the loss yielded a sampling efficiency of 64 % for the same tubing, when taking into account turbulent inertial deposition of aerosol to the walls as well as loss due to gravitational settling. At Cabauw tower, theoretical estimates of the loss in vertical tubing with 10 mm ID and 200 m lengths with flow rate of 1.1 m3 h−1 yielded a total efficiency of 73 %, the same value as observed. 222Rn progeny loss increased strongly at activity concentrations below 1 Bq m−3. Based on our experiments, an empirical correction function for 222Rn progeny measurements when sampling through long Decabon tubing was developed, allowing correction of respective measurements for this particular experimental setting (tubing type and diameter, flow rate, aerosol size distribution) with an estimated uncertainty of 10–20 % for activity concentrations between 1 and 2 Bq m−3 and less than 10 % for activity concentrations above 2 Bq m−3.
  •  
6.
  • Levin, Ingeborg, et al. (författare)
  • Limitations of the radon tracer method (RTM) to estimate regional greenhouse gas (GHG) emissions - A case study for methane in Heidelberg
  • 2021
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:23, s. 17907-17926
  • Tidskriftsartikel (refereegranskat)abstract
    • Correlations of nighttime atmospheric methane (CH4) and 222radon (222Rn) observations in Heidelberg, Germany, were evaluated with the radon tracer method (RTM) to estimate the trend of annual nocturnal CH4 emissions from 1996-2020 in the footprint of the station. After an initial 30ĝ€¯% decrease in emissions from 1996 to 2004, there was no further systematic trend but small inter-annual variations were observed thereafter. This is in accordance with the trend of total emissions until 2010 reported by the EDGARv6.0 inventory for the surroundings of Heidelberg and provides a fully independent top-down verification of the bottom-up inventory changes. We show that the reliability of total nocturnal CH4 emission estimates with the RTM critically depends on the accuracy and representativeness of the 222Rn exhalation rates estimated from soils in the footprint of the site. Simply using 222Rn fluxes as estimated by Karstens et al. (2015) could lead to biases in the estimated greenhouse gas (GHG) fluxes as large as a factor of 2. RTM-based GHG flux estimates also depend on the parameters chosen for the nighttime correlations of CH4 and 222Rn, such as the nighttime period for regressions and the R2 cut-off value for the goodness of the fit. Quantitative comparison of total RTM-based top-down flux estimates with bottom-up emission inventories requires representative high-resolution footprint modelling, particularly in polluted areas where CH4 emissions show large heterogeneity. Even then, RTM-based estimates are likely biased low if point sources play a significant role in the station footprint as their emissions may not be fully captured by the RTM method, for example, if stack emissions are injected above the top of the nocturnal inversion layer or if point-source emissions from the surface are not well mixed into the footprint of the measurement site. Long-term representative 222Rn flux observations in the footprint of a station are indispensable in order to apply the RTM method for reliable quantitative flux estimations of GHG emissions from atmospheric observations.
  •  
7.
  • Papale, Dario, et al. (författare)
  • Standards and Open Access are the ICOS Pillars Reply to "Comments on 'The Integrated Carbon Observation System in Europe'"
  • 2023
  • Ingår i: Bulletin of the American Meteorological Society. - 0003-0007. ; 104:12, s. 953-955
  • Tidskriftsartikel (refereegranskat)abstract
    • In his comment (Kowalski 2023) on our recent publication (Heiskanen et al. 2022) where we present the Integrated Carbon Observation System (ICOS) research infrastructure, Andrew Kowalski introduces three important and, in our opinion, different potential issues in the definition, collection, and availability of field measurements made by the ICOS network, and he proposes possible solutions to these issues.
  •  
8.
  • Prokopiou, Markella, et al. (författare)
  • Constraining N2O emissions since 1940 using firn air isotope measurements in both hemispheres
  • 2017
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 17:7, s. 4539-4564
  • Tidskriftsartikel (refereegranskat)abstract
    • N2O is currently the third most important anthropogenic greenhouse gas in terms of radiative forcing and its atmospheric mole fraction is rising steadily. To quantify the growth rate and its causes over the past decades, we performed a multi-site reconstruction of the atmospheric N2O mole fraction and isotopic composition using new and previously published firn air data collected from Greenland and Antarctica in combination with a firn diffusion and densification model. The multi-site reconstruction showed that while the global mean N2O mole fraction increased from (290±1)nmolmol-1 in 1940 to (322±1)nmolmol-1 in 2008, the isotopic composition of atmospheric N2O decreased by (-2.2±0.2)% for δ15Nav, (-1.0±0.3)% for δ18O, (-1.3±0.6)% for δ15Nα, and (-2.8±0.6)% for δ15Nβ over the same period. The detailed temporal evolution of the mole fraction and isotopic composition derived from the firn air model was then used in a two-box atmospheric model (comprising a stratospheric box and a tropospheric box) to infer changes in the isotopic source signature over time. The precise value of the source strength depends on the choice of the N2O lifetime, which we choose to fix at 123 years. The average isotopic composition over the investigated period is δ15Nav Combining double low line (-7.6±0.8)% (vs. air-N2), δ18O Combining double low line (32.2±0.2)% (vs. Vienna Standard Mean Ocean Water-VSMOW) for δ18O, δ15Nα Combining double low line (-3.0±1.9)% and δ15Nβ Combining double low line (-11.7±2.3)%. δ15Nav, and δ15Nβ show some temporal variability, while for the other signatures the error bars of the reconstruction are too large to retrieve reliable temporal changes. Possible processes that may explain trends in 15N are discussed. The 15N site preference (Combining double low line δ15Nα-δ15Nβ) provides evidence of a shift in emissions from denitrification to nitrification, although the uncertainty envelopes are large.
  •  
9.
  • Schmithüsen, Dominik, et al. (författare)
  • A European-wide 222radon and 222radon progeny comparison study
  • 2017
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-8548. ; 10:4, s. 1299-1312
  • Tidskriftsartikel (refereegranskat)abstract
    • Although atmospheric 222radon (222Rn) activity concentration measurements are currently performed worldwide, they are being made by many different laboratories and with fundamentally different measurement principles, so compatibility issues can limit their utility for regional-to-global applications. Consequently, we conducted a European-wide 222Rn ∕ 222Rn progeny comparison study in order to evaluate the different measurement systems in use, determine potential systematic biases between them, and estimate correction factors that could be applied to harmonize data for their use as a tracer in atmospheric applications. Two compact portable Heidelberg radon monitors (HRM) were moved around to run for at least 1 month at each of the nine European measurement stations included in this comparison. Linear regressions between parallel data sets were calculated, yielding correction factors relative to the HRM ranging from 0.68 to 1.45. A calibration bias between ANSTO (Australian Nuclear Science and Technology Organisation) two-filter radon monitors and the HRM of ANSTO ∕ HRM = 1.11 ± 0.05 was found. Moreover, for the continental stations using one-filter systems that derive atmospheric 222Rn activity concentrations from measured atmospheric progeny activity concentrations, preliminary 214Po ∕ 222Rn disequilibrium values were also estimated. Mean station-specific disequilibrium values between 0.8 at mountain sites (e.g. Schauinsland) and 0.9 at non-mountain sites for sampling heights around 20 to 30 m above ground level were determined. The respective corrections for calibration biases and disequilibrium derived in this study need to be applied to obtain a compatible European atmospheric 222Rn data set for use in quantitative applications, such as regional model intercomparison and validation or trace gas flux estimates with the radon tracer method.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy