SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Levin Malin 1973) "

Sökning: WFRF:(Levin Malin 1973)

  • Resultat 1-25 av 54
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Linda, 1973, et al. (författare)
  • Glucosylceramide synthase deficiency in the heart compromises β1-adrenergic receptor trafficking
  • 2021
  • Ingår i: European Heart Journal. - : Oxford University Press. - 0195-668X .- 1522-9645. ; 42:43, s. 4481-4492
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS: Cardiac injury and remodelling are associated with the rearrangement of cardiac lipids. Glycosphingolipids are membrane lipids that are important for cellular structure and function, and cardiac dysfunction is a characteristic of rare monogenic diseases with defects in glycosphingolipid synthesis and turnover. However, it is not known how cardiac glycosphingolipids regulate cellular processes in the heart. The aim of this study is to determine the role of cardiac glycosphingolipids in heart function.METHODS AND RESULTS: Using human myocardial biopsies, we showed that the glycosphingolipids glucosylceramide and lactosylceramide are present at very low levels in non-ischaemic human heart with normal function and are elevated during remodelling. Similar results were observed in mouse models of cardiac remodelling. We also generated mice with cardiomyocyte-specific deficiency in Ugcg, the gene encoding glucosylceramide synthase (hUgcg-/- mice). In 9- to 10-week-old hUgcg-/- mice, contractile capacity in response to dobutamine stress was reduced. Older hUgcg-/- mice developed severe heart failure and left ventricular dilatation even under baseline conditions and died prematurely. Using RNA-seq and cell culture models, we showed defective endolysosomal retrograde trafficking and autophagy in Ugcg-deficient cardiomyocytes. We also showed that responsiveness to β-adrenergic stimulation was reduced in cardiomyocytes from hUgcg-/- mice and that Ugcg knockdown suppressed the internalization and trafficking of β1-adrenergic receptors.CONCLUSIONS: Our findings suggest that cardiac glycosphingolipids are required to maintain β-adrenergic signalling and contractile capacity in cardiomyocytes and to preserve normal heart function.
  •  
2.
  • Andersson, Linda, 1973, et al. (författare)
  • Rip2 modifies VEGF-induced signalling and vascular permeability in myocardial ischemia
  • 2015
  • Ingår i: Cardiovascular Research. - : Oxford University Press (OUP). - 0008-6363 .- 1755-3245. ; 107:4, s. 478-486
  • Tidskriftsartikel (refereegranskat)abstract
    • In myocardial ischemia, vascular endothelial growth factor (VEGF) induces permeability by activating a signalling pathway that includes VEGF receptor 2 (VEGFR2), resulting in increased oedema and inflammation and thereby expanding the area of tissue damage. In this study, we investigated the role of receptor-interacting protein 2 (Rip2) in VEGF signalling and myocardial ischemia/reperfusion injury.
  •  
3.
  • Cinato, Mathieu, et al. (författare)
  • Cardiac Plin5 interacts with SERCA2 and promotes calcium handling and cardiomyocyte contractility
  • 2023
  • Ingår i: Life Science Alliance. - : Life Science Alliance, LLC. - 2575-1077. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The adult heart develops hypertrophy to reduce ventricular wall stress and maintain cardiac function in response to an increased workload. Although pathological hypertrophy generally prog-resses to heart failure, physiological hypertrophy may be car-dioprotective. Cardiac-specific overexpression of the lipid-droplet protein perilipin 5 (Plin5) promotes cardiac hypertrophy, but it is unclear whether this response is beneficial. We analyzed RNA -sequencing data from human left ventricle and showed that car-diac PLIN5 expression correlates with up-regulation of cardiac contraction-related processes. To investigate how elevated cardiac Plin5 levels affect cardiac contractility, we generated mice with cardiac-specific overexpression of Plin5 (MHC-Plin5 mice). These mice displayed increased left ventricular mass and cardiomyocyte size but preserved heart function. Quantitative proteomics identified sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) as a Plin5-interacting protein. In situ proximity ligation assay further confirmed the Plin5/SERCA2 interaction. Live imaging showed in-creases in intracellular Ca2+ release during contraction, Ca2+ removal during relaxation, and SERCA2 function in MHC-Plin5 versus WT cardiomyocytes. These results identify a role of Plin5 in improving cardiac contractility through enhanced Ca2+ signaling.
  •  
4.
  • Andersson, Linda, 1973, et al. (författare)
  • Deficiency in perilipin 5 reduces mitochondrial function and membrane depolarization in mouse hearts.
  • 2017
  • Ingår i: The international journal of biochemistry & cell biology. - : Elsevier BV. - 1878-5875 .- 1357-2725. ; 91:Pt A, s. 9-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Myocardial triglycerides stored in lipid droplets are important in regulating the intracellular delivery of fatty acids for energy generation in mitochondria, for membrane biosynthesis, and as agonists for intracellular signaling. Previously, we showed that deficiency in the lipid droplet protein perilipin 5 (Plin5) markedly reduces triglyceride storage in cardiomyocytes and increases the flux of fatty acids into phospholipids. Here, we investigated whether Plin5 deficiency in cardiomyocytes alters mitochondrial function. We found that Plin5 deficiency reduced mitochondrial oxidative capacity. Furthermore, in mitochondria from Plin5((-/)(-)) hearts, the fatty acyl composition of phospholipids in mitochondrial membranes was altered and mitochondrial membrane depolarization was markedly compromised. These findings suggest that mitochondria isolated from hearts deficient in Plin5, have specific functional defects.
  •  
5.
  • Bjursten, Sara, et al. (författare)
  • Early rise in brain damage markers and high ICOS expression in CD4+and CD8+T cells during checkpoint inhibitor-induced encephalomyelitis
  • 2021
  • Ingår i: Journal for Immunotherapy of Cancer. - : BMJ. - 2051-1426. ; 9:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a case of rapid eradication of melanoma brain metastases and simultaneous near-fatal encephalomyelitis following double immune checkpoint blockade. Brain damage marker S-100B and C reactive protein increased before symptoms or signs of encephalomyelitis and peaked when the patient fell into a coma. At that point, additional brain damage markers and peripheral T cell phenotype was analyzed. The analyses were repeated four times during the patient's recovery. Axonal damage marker neurofilament light polypeptide (NFL) and astrocytic damage marker glial fibrillar acidic protein (GFAP) were very high in blood and cerebrospinal fluid and gradually normalized after immunosuppression and intensive care. The costimulatory receptor inducible T cell costimulatory receptor (ICOS) was expressed on a high proportion of CD4+ and CD8+T cells as encephalomyelitis symptoms peaked and then gradually decreased in parallel with clinical improvement. Both single and double immune checkpoint inhibitor-treated melanoma patients with other serious immune-related adverse events (irAE) (n=9) also expressed ICOS on a significantly higher proportion of CD4+ and CD8+T cells compared with controls without irAE (n=12). In conclusion, our results suggest a potential role for ICOS on CD4+ and CD8+T cells in mediating encephalomyelitis and other serious irAE. In addition, brain damage markers in blood could facilitate early diagnosis of encephalitis.
  •  
6.
  • Drevinge, Christina, 1983, et al. (författare)
  • Perilipin 5 is protective in the ischemic heart
  • 2016
  • Ingår i: International Journal of Cardiology. - : Elsevier BV. - 0167-5273 .- 1874-1754. ; 219, s. 446-454
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Myocardial ischemia is associated with alterations in cardiac metabolism, resulting in decreased fatty acid oxidation and increased lipid accumulation. Here we investigate how myocardial lipid content and dynamics affect the function of the ischemic heart, and focus on the role of the lipid droplet protein perilipin 5 (Plin5) in the pathophysiology of myocardial ischemia. Methods and results: We generated Plin5(-/-) mice and found that Plin5 deficiency dramatically reduced the triglyceride content in the heart. Under normal conditions, Plin5(-/-) mice maintained a close to normal heart function by decreasing fatty acid uptake and increasing glucose uptake, thus preserving the energy balance. However, during stress or myocardial ischemia, Plin5 deficiency resulted in myocardial reduced substrate availability, severely reduced heart function and increased mortality. Importantly, analysis of a human cohort with suspected coronary artery disease showed that a common noncoding polymorphism, rs884164, decreases the cardiac expression of PLIN5 and is associated with reduced heart function following myocardial ischemia, indicating a role for Plin5 in cardiac dysfunction. Conclusion: Our findings indicate that Plin5 deficiency alters cardiac lipid metabolism and associates with reduced survival following myocardial ischemia, suggesting that Plin5 plays a beneficial role in the heart following ischemia. (C) 2016 The Authors. Published by Elsevier Ireland Ltd.
  •  
7.
  • Klevstig, Martina, et al. (författare)
  • Cardiac expression of the microsomal triglyceride transport protein protects the heart function during ischemia
  • 2019
  • Ingår i: Journal of Molecular and Cellular Cardiology. - : Elsevier BV. - 0022-2828 .- 1095-8584. ; 137, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: The microsomal triglyceride transport protein (MTTP) is critical for assembly and secretion of apolipoprotein B (apoB)-containing lipoproteins and is most abundant in the liver and intestine. Surprisingly, MTTP is also expressed in the heart. Here we tested the functional relevance of cardiac MTTP expression. Materials and methods: We combined clinical studies, advanced expression analysis of human heart biopsies and analyses in genetically modified mice lacking cardiac expression of the MTTP-A isoform of MTTP. Results: Our results indicate that lower cardiac MTTP expression in humans is associated with structural and perfusion abnormalities in patients with ischemic heart disease. MTTP-A deficiency in mice heart does not affect total MTTP expression, activity or lipid concentration in the heart. Despite this, MTTP-A deficient mice displayed impaired cardiac function after a myocardial infarction. Expression analysis of MTTP indicates that MTTP expression is linked to cardiac function and responses in the heart. Conclusions: Our results indicate that MTTP may play an important role for the heart function in conjunction to ischemic events.
  •  
8.
  • Laudette, Marion, et al. (författare)
  • Cardiomyocyte-specific PCSK9 deficiency compromises mitochondrial bioenergetics and heart function
  • 2023
  • Ingår i: Cardiovascular Research. - : Oxford University Press (OUP). - 0008-6363 .- 1755-3245. ; 119:7, s. 1537-1552
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims Pro-protein convertase subtilisin-kexin type 9 (PCSK9), which is expressed mainly in the liver and at low levels in the heart, regulates cholesterol levels by directing low-density lipoprotein receptors to degradation. Studies to determine the role of PCSK9 in the heart are complicated by the close link between cardiac function and systemic lipid metabolism. Here, we sought to elucidate the function of PCSK9 specifically in the heart by generating and analysing mice with cardiomyocyte-specific Pcsk9 deficiency (CMPcsk9−/− mice) and by silencing Pcsk9 acutely in a cell culture model of adult cardiomyocyte-like cells. Methods and results Mice with cardiomyocyte-specific deletion of Pcsk9 had reduced contractile capacity, impaired cardiac function, and left ventricular dilatation at 28 weeks of age and died prematurely. Transcriptomic analyses revealed alterations of signalling pathways linked to cardiomyopathy and energy metabolism in hearts from CM-Pcsk9−/− mice vs. wild-type littermates. In agreement, levels of genes and proteins involved in mitochondrial metabolism were reduced in CM-Pcsk9−/− hearts. By using a Seahorse flux analyser, we showed that mitochondrial but not glycolytic function was impaired in cardiomyocytes from CM-Pcsk9−/− mice. We further showed that assembly and activity of electron transport chain (ETC) complexes were altered in isolated mitochondria from CM-Pcsk9−/− mice. Circulating lipid levels were unchanged in CM-Pcsk9−/− mice, but the lipid composition of mitochondrial membranes was altered. In addition, cardiomyocytes from CM-Pcsk9−/− mice had an increased number of mitochondria–endoplasmic reticulum contacts and alterations in the morphology of cristae, the physical location of the ETC complexes. We also showed that acute Pcsk9 silencing in adult cardiomyocyte-like cells reduced the activity of ETC complexes and impaired mitochondrial metabolism. Conclusion PCSK9, despite its low expression in cardiomyocytes, contributes to cardiac metabolic function, and PCSK9 deficiency in cardiomyocytes is linked to cardiomyopathy, impaired heart function, and compromised energy production.
  •  
9.
  • Mardani, Ismena, et al. (författare)
  • Plin2-deficiency reduces lipophagy and results in increased lipid accumulation in the heart.
  • 2019
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Myocardial dysfunction is commonly associated with accumulation of cardiac lipid droplets (LDs). Perilipin 2 (Plin2) is a LD protein that is involved in LD formation, stability and trafficking events within the cell. Even though Plin2 is highly expressed in the heart, little is known about its role in myocardial lipid storage. A recent report shows that cardiac overexpression of Plin2 result in massive myocardial steatosis suggesting that Plin2 stabilizes LDs. In this study, we hypothesized that deficiency in Plin2 would result in reduced myocardial lipid storage. In contrast to our hypothesis, we found increased accumulation of triglycerides in hearts, and specifically in cardiomyocytes, from Plin2-/- mice. Although Plin2-/- mice had markedly enhanced lipid levels in the heart, they had normal heart function under baseline conditions and under mild stress. However, after an induced myocardial infarction, stroke volume and cardiac output were reduced in Plin2-/- mice compared with Plin2+/+ mice. We further demonstrated that the increased triglyceride accumulation in Plin2-deficient hearts was caused by altered lipophagy. Together, our data show that Plin2 is important for proper hydrolysis of LDs.
  •  
10.
  • Pirazzi, Carlo, et al. (författare)
  • Patatin-like phospholipase domain-containing 3 (PNPLA3) I148M (rs738409) affects hepatic VLDL secretion in humans and in vitro
  • 2012
  • Ingår i: Journal of Hepatology. - : Elsevier BV. - 0168-8278 .- 1600-0641. ; 57:6, s. 1276-1282
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & Aims: The robust association between non-alcoholic fatty liver disease (NAFLD) and the genetic variant I148M (rs738409) in PNPLA3 has been widely replicated. The aim of this study was to investigate the effect of the PNPLA3 I148M mutation on: (1) hepatic secretion of very low density lipoproteins (VLDL) in humans; and (2) secretion of apolipoprotein B (apoB) from McA-RH 7777 cells, which secrete VLDL-sized apoB-containing lipoproteins. Methods: VLDL kinetics was analyzed after a bolus infusion of stable isotopes in 55 overweight/obese men genotyped for the PNPLA3 I148M variant. Intracellular lipid content, apoB secretion and glycerolipid metabolism were studied in McA-RH 7777 cells overexpressing the human 1481 wild type or 148M mutant PNPLA3 protein. Results: In humans, carriers of the PNPLA3 148M allele had increased liver fat compared to 1481 homozygotes, and kinetic analysis showed a relatively lower secretion of the large, triglyceride-rich VLDL (VLDL1) in 148M carriers vs. 1481 homozygotes for the same amount of liver fat. McA-RH 7777 cells overexpressing the 148M mutant protein showed a higher intracellular triglyceride content with a lower apoB secretion and fatty acid efflux, compared to cells overexpressing the 1481 wild type protein. The responses with 148M matched those observed in cells expressing the empty vector, indicating that the mutation results in loss of function. Conclusions: We have shown that PNPLA3 affects the secretion of apoB-containing lipoproteins both in humans and in vitro and that the 148M protein is a loss-of-function mutation. We propose that PNPLA3 148M promotes intracellular lipid accumulation in the liver by reducing the lipidation of VLDL.
  •  
11.
  • Chaudhari, Aditi, et al. (författare)
  • ARAP2 promotes GLUT1-mediated basal glucose uptake through regulation of sphingolipid metabolism
  • 2016
  • Ingår i: Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids. - : Elsevier BV. - 1388-1981. ; 1861:11, s. 1643-1651
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipid droplet formation, which is driven by triglyceride synthesis, requires several droplet-associated proteins. We identified ARAP2 (an ADP-ribosylation factor 6 GTPase-activating protein) in the lipid droplet proteome of NIH-3T3 cells and showed that knockdown of ARAP2 resulted in decreased lipid droplet formation and triglyceride synthesis. We also showed that ARAP2 knockdown did not affect fatty acid uptake but reduced basal glucose uptake, total levels of the glucose transporter GLUT1, and GLUT1 levels in the plasma membrane and the lipid micro-domain fraction (a specialized plasma membrane domain enriched in sphingolipids). Microarray analysis showed that ARAP2 knockdown altered expression of genes involved in sphingolipid metabolism. Because sphingolipids are known to play a key role in cell signaling, we performed lipidomics to further investigate the relationship between ARAP2 and sphingolipids and potentially identify a link with glucose uptake. We found that ARAP2 knockdown increased glucosylceramide and lactosylceramide levels without affecting ceramide levels, and thus speculated that the rate-limiting enzyme in glycosphingolipid synthesis, namely glucosylceramide synthase (GCS), could be modified by ARAP2. In agreement with our hypothesis, we showed that the activity of GCS was increased by ARAP2 knockdown and reduced by ARAP2 overexpression. Furthermore, pharmacological inhibition of GCS resulted in increases in basal glucose uptake, total GLUT1 levels, triglyceride biosynthesis from glucose, and lipid droplet formation, indicating that the effects of GCS inhibition are the opposite to those resulting from ARAP2 knockdown. Taken together, our data suggest that ARAP2 promotes lipid droplet formation by modifying sphingolipid metabolism through GCS.
  •  
12.
  • Cinato, Mathieu, et al. (författare)
  • Role of Perilipins in Oxidative Stress-Implications for Cardiovascular Disease
  • 2024
  • Ingår i: ANTIOXIDANTS. - 2076-3921. ; 13:2
  • Forskningsöversikt (refereegranskat)abstract
    • Oxidative stress is the imbalance between the production of reactive oxygen species (ROS) and antioxidants in a cell. In the heart, oxidative stress may deteriorate calcium handling, cause arrhythmia, and enhance maladaptive cardiac remodeling by the induction of hypertrophic and apoptotic signaling pathways. Consequently, dysregulated ROS production and oxidative stress have been implicated in numerous cardiac diseases, including heart failure, cardiac ischemia-reperfusion injury, cardiac hypertrophy, and diabetic cardiomyopathy. Lipid droplets (LDs) are conserved intracellular organelles that enable the safe and stable storage of neutral lipids within the cytosol. LDs are coated with proteins, perilipins (Plins) being one of the most abundant. In this review, we will discuss the interplay between oxidative stress and Plins. Indeed, LDs and Plins are increasingly being recognized for playing a critical role beyond energy metabolism and lipid handling. Numerous reports suggest that an essential purpose of LD biogenesis is to alleviate cellular stress, such as oxidative stress. Given the yet unmet suitability of ROS as targets for the intervention of cardiovascular disease, the endogenous antioxidant capacity of Plins may be beneficial.
  •  
13.
  •  
14.
  • Ekstrand, Matias, et al. (författare)
  • Depletion of ATP and glucose in advanced human atherosclerotic plaques
  • 2017
  • Ingår i: PLoS One. - : Public Library of Science (PLoS). - 1932-6203. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Severe hypoxia develops close to the necrotic core of advanced human atherosclerotic plaques, but the energy metabolic consequences of this hypoxia are not known. In animal models, plaque hypoxia is also associated with depletion of glucose and ATP. ATP depletion may impair healing of plaques and promote necrotic core expansion. To investigate if ATP depletion is present in human plaques, we analyzed the distribution of energy metabolites (ATP, glucose, glycogen and lactate) in intermediate and advanced human plaques.Snap frozen carotid endarterectomies from 6 symptomatic patients were analyzed. Each endarterectomy included a large plaque ranging from the common carotid artery (CCA) to the internal carotid artery (ICA). ATP, glucose, and glycogen concentrations were lower in advanced (ICA) compared to intermediate plaques (CCA), whereas lactate concentrations were higher. The lowest concentrations of ATP, glucose and glycogen were detected in the perinecrotic zone of advanced plaques.Our study demonstrates severe ATP depletion and glucose deficiency in the perinecrotic zone of human advanced atherosclerotic plaques. ATP depletion may impair healing of plaques and promote disease progression.
  •  
15.
  • Glise, Lars, 1988, et al. (författare)
  • pH-Dependent Protonation of Histidine Residues Is Critical for Electrostatic Binding of Low-Density Lipoproteins to Human Coronary Arteries
  • 2022
  • Ingår i: Arteriosclerosis Thrombosis and Vascular Biology. - : Ovid Technologies (Wolters Kluwer Health). - 1079-5642 .- 1524-4636. ; 42:8, s. 1037-1047
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The initiating step in atherogenesis is the electrostatic binding of LDL (low-density lipoprotein) to proteoglycan glycosaminoglycans in the arterial intima. However, although proteoglycans are widespread throughout the intima of most coronary artery segments, LDL is not evenly distributed, indicating that LDL retention is not merely dependent on the presence of proteoglycans. We aim to identify factors that promote the interaction between LDL and the vessel wall of human coronary arteries. Methods: We developed an ex vivo model to investigate binding of labeled human LDL to human coronary artery sections without the interference of cellular processes. Results: By staining consecutive sections of human coronary arteries, we found strong staining of sulfated glycosaminoglycans throughout the arterial intima, whereas endogenous LDL deposits were focally distributed. Ex vivo binding of LDL was uniform at all intimal areas with sulfated glycosaminoglycans. However, lowering the pH from 7.4 to 6.5 triggered a 35-fold increase in LDL binding. The pH-dependent binding was abolished by pretreating LDL with diethyl-pyrocarbonate, which blocks the protonation of histidine residues, or cyclohexanedione, which inhibits the positive charge of site B on LDL. Thus, both histidine protonation and site B are required for strong electrostatic LDL binding to the intima. Conclusions: This study identifies histidine protonation as an important component for electrostatic LDL binding to human coronary arteries. Our findings show that the local pH will have a profound impact on LDL's affinity for sulfated glycosaminoglycans, which may influence the retention and accumulation pattern of LDL in the arterial vasculature.
  •  
16.
  • Klevstig, Martina, et al. (författare)
  • Targeting acid sphingomyelinase reduces cardiac ceramide accumulation in the post-ischemic heart
  • 2016
  • Ingår i: Journal of Molecular and Cellular Cardiology. - : Elsevier BV. - 0022-2828 .- 1095-8584. ; 93, s. 69-72
  • Tidskriftsartikel (refereegranskat)abstract
    • Ceramide accumulation is known to accompany acute myocardial ischemia, but its role in the pathogenesis of ischemic heart disease is unclear. In this study, we aimed to determine how ceramides accumulate in the ischemic heart and to determine if cardiac function following ischemia can be improved by reducing ceramide accumulation. To investigate the association between ceramide accumulation and heart function, we analyzed myocardial left ventricle biopsies from subjects with chronic ischemia and found that ceramide levels were higher in biopsies from subjects with reduced heart function. Ceramides are produced by either de novo synthesis or hydrolysis of sphingomyelin catalyzed by acid and/or neutral sphingomyelinase. We used cultured HL-1 cardiomyocytes to investigate these pathways and showed that acid sphingomyelinase activity rather than neutral sphingomyelinase activity or de novo sphingolipid synthesis was important for hypoxia-induced ceramide accumulation. We also used mice with a partial deficiency in acid sphingomyelinase (Smpd1(+/-) mice) to investigate if limiting ceramide accumulation under ischemic conditions would have a beneficial effect on heart function and survival. Although we showed that cardiac ceramide accumulation was reduced in Smpd1(+/-) mice 24 h after an induced myocardial infarction, this reduction was not accompanied by an improvement in heart function or survival. Our findings show that accumulation of cardiac ceramides in the post-ischemic heart is mediated by acid sphingomyelinase. However, targeting ceramide accumulation in the ischemic heart may not be a beneficial treatment strategy.
  •  
17.
  • Levin, Malin, 1973, et al. (författare)
  • Cardiomyocytes, sphingolipids and cardio myotoxicity
  • 2023
  • Ingår i: Current Opinion in Lipidology. - 0957-9672. ; 34:4, s. 180-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose of reviewSphingolipids are structurally diverse membrane lipids localized in lipid bilayers. Sphingolipids are not only important structural components of cellular membranes, but they are also important regulators of cellular trafficking and signal transduction and are implicated in several diseases. Here, we review the latest insights into sphingolipids and their role in cardiac function and cardiometabolic disease.Recent findingsThe underlying mechanisms linking sphingolipids to cardiac dysfunction are still not fully clarified. Sphingolipids, and in particular ceramides, have emerged as important players in lipotoxicity, mediating inflammation, impaired insulin signalling and apoptosis. In addition, recent findings highlight the importance of glycosphingolipid homeostasis in cardiomyocyte membranes, where they are required to maintain & beta;-adrenergic signalling and contractile capacity to preserve normal heart function. Thus, glycosphingolipid homeostasis in cardiac membranes characterizes a novel mechanism linking sphingolipids to cardiac disease.Modulation of cardiac sphingolipids may represent a promising therapeutic approach. Sustained investigation of the link between sphingolipids and cardiomyocyte function is therefore needed and we hope that this review may inspire researchers to further elucidate the action of these lipids.
  •  
18.
  • Li, Lu, 1964, et al. (författare)
  • ARF6 Regulates Neuron Differentiation through Glucosylceramide Synthase
  • 2013
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 8:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The small GTPase ADP ribosylation factor 6 (ARF6) mediates endocytosis and has in addition been shown to regulate neuron differentiation. Here we investigated whether ARF6 promotes differentiation of Neuro-2a neuronal cells by modifying the cellular lipid composition. We showed that knockdown of ARF6 by siRNA in Neuro-2a cells increased neuronal outgrowth as expected. ARF6 knockdown also resulted in increased glucosylceramide levels and decreased sphingomyelin levels, but did not affect the levels of ceramide or phospholipids. We speculated that the ARF6 knockdown-induced increase in glucosylceramide was caused by an effect on glucosylceramide synthase and, in agreement, showed that ARF6 knockdown increased the mRNA levels and activity of glucosylceramide synthase. Finally, we showed that incubation of Neuro-2a cells with the glucosylceramide synthase inhibitor D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP) normalized the increased neuronal outgrowth induced by ARF6 knockdown. Our results thus show that ARF6 regulates neuronal differentiation through an effect on glucosylceramide synthase and glucosylceramide levels.
  •  
19.
  • Olofsson, Sven-Olof, 1947, et al. (författare)
  • Triglyceride containing lipid droplets and lipid droplet-associated proteins.
  • 2008
  • Ingår i: Current opinion in lipidology. - 0957-9672. ; 19:5, s. 441-7
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE OF REVIEW: Cytosolic lipid droplets are now recognized as dynamic organelles. This review summarizes our current understanding of the mechanisms involved in the formation of lipid droplets, the importance of lipid droplet-associated proteins and the link between lipid droplet accumulation and development of insulin resistance. RECENT FINDINGS: Lipid droplets are formed as primordial droplets and they increase in size by fusion. This fusion process requires the alpha-soluble N-ethylmaleimide-sensitive factor adaptor protein receptor SNAP23, which is also involved in the insulin-dependent translocation of a glucose transporter to the plasma membrane. Recent data suggest that SNAP23 is the link between increased lipid droplet accumulation and development of insulin resistance. Lipid droplets also form tight interactions with other organelles. Furthermore, additional lipid droplet-associated proteins have been identified and shown to play a role in droplet assembly and turnover, and in sorting and trafficking events. SUMMARY: Recent studies have identified a number of key proteins that are involved in the formation and turnover of lipid droplets, and SNAP23 has been identified as a link between accumulation of lipid droplets and development of insulin resistance. Further understanding of lipid droplet biology could indicate potential therapeutic targets to prevent accumulation of lipid droplets and associated complications.
  •  
20.
  • Pandita, Ankur, et al. (författare)
  • Intussusceptive angiogenesis in human metastatic malignant melanoma. : Intussusception in human melanoma
  • 2021
  • Ingår i: The American Journal of Pathology. - : Elsevier BV. - 1525-2191 .- 0002-9440. ; 191:11, s. 2023-2038
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiogenesis supplies oxygen and nutrients to growing tumors. Inhibiting angiogenesis may stop tumor growth, but vascular endothelial growth factor inhibitors have limited effect in most tumors. The limited effect may be explained by an additional, less vascular endothelial growth factor-driven, form of angiogenesis known as intussusceptive angiogenesis. The importance of intussusceptive angiogenesis in human tumors is not known. Epifluorescence and confocal microscopy was used to visualize intravascular pillars, the hallmark structure of intussusceptive angiogenesis, in tumors. Human malignant melanoma metastases, patient-derived melanoma xenografts in mice (PDX), and genetically engineered BRAF-induced, PTEN-deficient (BPT) mice (BrafCA/+Ptenf/fTyr-Cre+/0-mice) were analyzed for pillars. Gene expression in human melanoma metastases and PDXs was analyzed by RNA sequencing. Matrix metalloproteinase 9 (MMP9) protein expression and T-cell and macrophage infiltration in tumor sections were determined with multiplex immunostaining. Intravascular pillars were detected in human metastases but rarely in PDXs and not in BPT mice. The expression of MMP9 mRNA was higher in human metastases compared with PDXs. High expression of MMP9 protein as well as infiltration of macrophages and T-cell infiltration were detected in proximity to intravascular pillars. MMP inhibition blocked formation of pillars, but not tubes or tip cells, invitro. In conclusion, intussusceptive angiogenesis may contribute to the growth of human melanoma metastases. MMP inhibition blocked pillar formation invitro and should be further investigated as a potential anti-angiogenic drug target in metastatic melanoma.
  •  
21.
  • Pirazzi, Carlo, et al. (författare)
  • PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells
  • 2014
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:15, s. 4077-4085
  • Tidskriftsartikel (refereegranskat)abstract
    • Retinoids are micronutrients that are stored as retinyl esters in the retina and hepatic stellate cells (HSCs). HSCs are key players in fibrogenesis in chronic liver diseases. The enzyme responsible for hydrolysis and release of retinyl esters from HSCs is unknown and the relationship between retinoid metabolism and liver disease remains unclear. We hypothesize that the patatin-like phospholipase domain-containing 3 (PNPLA3) protein is involved in retinol metabolism in HSCs. We tested our hypothesis both in primary human HSCs and in a human cohort of subjects with non-alcoholic fatty liver disease (N = 146). Here we show that PNPLA3 is highly expressed in human HSCs. Its expression is regulated by retinol availability and insulin, and increased PNPLA3 expression results in reduced lipid droplet content. PNPLA3 promotes extracellular release of retinol from HSCs in response to insulin. We also show that purified wild-type PNPLA3 hydrolyzes retinyl palmitate into retinol and palmitic acid. Conversely, this enzymatic activity is markedly reduced with purified PNPLA3 148M, a common mutation robustly associated with liver fibrosis and hepatocellular carcinoma development. We also find the PNPLA3 I148M genotype to be an independent (P = 0.009 in a multivariate analysis) determinant of circulating retinol-binding protein 4, a reliable proxy for retinol levels in humans. This study identifies PNPLA3 as a lipase responsible for retinyl-palmitate hydrolysis in HSCs in humans. Importantly, this indicates a potential novel link between HSCs, retinoid metabolism and PNPLA3 in determining the susceptibility to chronic liver disease.
  •  
22.
  • Svedlund Eriksson, Elin, et al. (författare)
  • Castration of Male Mice Induces Metabolic Remodeling of the Heart
  • 2022
  • Ingår i: Journal of the Endocrine Society. - : The Endocrine Society. - 2472-1972. ; 6:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Androgen deprivation therapy of prostate cancer, which suppresses serum testosterone to castrate levels, is associated with increased risk of heart failure. Here we tested the hypothesis that castration alters cardiac energy substrate uptake, which is tightly coupled to the regulation of cardiac structure and function. Short-term (3-4 weeks) surgical castration of male mice reduced the relative heart weight. While castration did not affect cardiac function in unstressed conditions, we observed reductions in heart rate, stroke volume, cardiac output, and cardiac index during pharmacological stress with dobutamine in castrated vs sham-operated mice. Experiments using radiolabeled lipoproteins and glucose showed that castration shifted energy substrate uptake in the heart from lipids toward glucose, while testosterone replacement had the opposite effect. There was increased expression of fetal genes in the heart of castrated mice, including a strong increase in messenger RNA and protein levels of beta-myosin heavy chain (MHC), the fetal isoform of MHC. In conclusion, castration of male mice induces metabolic remodeling and expression of the fetal gene program in the heart, in association with a reduced cardiac performance during pharmacological stress. These findings may be relevant for the selection of treatment strategies for heart failure in the setting of testosterone deficiency.
  •  
23.
  • Yrlid, Ulf, 1971, et al. (författare)
  • Endothelial repair is dependent on CD11c(+) leukocytes to establish regrowing endothelial sheets with high cellular density
  • 2019
  • Ingår i: Journal of Leukocyte Biology. - : Oxford University Press (OUP). - 0741-5400 .- 1938-3673. ; 105:1, s. 195-202
  • Tidskriftsartikel (refereegranskat)abstract
    • Endothelial injury makes the vessel wall vulnerable to cardiovascular diseases. Injured endothelium regenerates by collective sheet migration, that is, the endothelial cells coordinate their motion and regrow as a sheet of cells with retained cell-cell contacts into the wounded area. Leukocytes appear to be involved in endothelial repair in vivo; however, little is known about their identity and role in the reparative sheet migration process. To address these questions, we developed a high-quality en face technique that enables visualizing of leukocytes and endothelial cells simultaneously following an endoluminal scratch wound injury of the mouse carotid artery. We discovered that regrowing endothelium forms a broad proliferative front accompanied by CD11c(+) leukocytes. Functionally, the leukocytes were dispensable for the initial migratory response of the regrowing endothelial sheet, but critical for the subsequent formation and maintenance of a front zone with high cellular density. Marker expression analyses, genetic fate mapping, phagocyte targeting experiments, and mouse knock-out experiments indicate that the CD11c(+) leukocytes were mononuclear phagocytes with an origin from both Ly6C(high) and Ly6C(low) monocytes. In conclusion, CD11c(+) mononuclear phagocytes are essential for a proper endothelial regrowth following arterial endoluminal scratch injury. Promoting the endothelial-preserving function of CD11c(+) leukocytes may be a strategy to enhance endothelial repair following surgical and endovascular procedures.
  •  
24.
  • Arif, Muhammad, et al. (författare)
  • Integrative transcriptomic analysis of tissue-specific metabolic crosstalk after myocardial infarction
  • 2021
  • Ingår i: Elife. - : eLife Sciences Publications, Ltd. - 2050-084X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Myocardial infarction (MI) promotes a range of systemic effects, many of which are unknown. Here, we investigated the alterations associated with MI progression in heart and other metabolically active tissues (liver, skeletal muscle, and adipose) in a mouse model of MI (induced by ligating the left ascending coronary artery) and sham-operated mice. We performed a genomewide transcriptomic analysis on tissue samples obtained 6- and 24 hr post MI or sham operation. By generating tissue-specific biological networks, we observed: (1) dysregulation in multiple biological processes (including immune system, mitochondrial dysfunction, fatty-acid beta-oxidation, and RNA and protein processing) across multiple tissues post MI and (2) tissue-specific dysregulation in biological processes in liver and heart post MI. Finally, we validated our findings in two independent MI cohorts. Overall, our integrative analysis highlighted both common and specific biological responses to MI across a range of metabolically active tissues.
  •  
25.
  • Björnson, Elias, 1988, et al. (författare)
  • Lipid profiling of human diabetic myocardium reveals differences in triglyceride fatty acyl chain length and degree of saturation.
  • 2020
  • Ingår i: International journal of cardiology. - : Elsevier BV. - 1874-1754 .- 0167-5273. ; 320, s. 106-111
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes is a major health problem in the world, and is strongly associated with impaired cardiac function and increased mortality. The causal relationship between type 2 diabetes and impaired cardiac function is still incompletely understood but changes in the cardiac lipid metabolism are believed to be a contributing factor. The objective of this study was to determine the lipid profile in human myocardial biopsies collected in vivo from patients with type 2 diabetes and compare to non-diabetic controls.We conducted full lipidomics analyses, using mass spectrometry, of 85 right atrial biopsies obtained from diabetic and non-diabetic patients undergoing elective cardiac surgery. The patients were characterized clinically and serum was analyzed for lipids and biochemical markers.The groups did not differ in BMI and in circulating triglycerides. We demonstrate that type 2 diabetes is associated with alterations in the cardiac lipidome. Interestingly, the absolute amount of lipids is not altered in the diabetic myocardium. However, triglycerides with longer fatty acyl chains are more abundant and there is a higher degree of unsaturated fatty acid chains in triglycerides in diabetic myocardium.Our study reveals that type 2 diabetes is a relatively strong determinant of the human cardiac lipidome (compared to other clinical variables). Although the total lipid content in the diabetic myocardium is not increased, the lipid composition is markedly affected.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 54
Typ av publikation
tidskriftsartikel (50)
konferensbidrag (2)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (52)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Levin, Malin, 1973 (52)
Borén, Jan, 1963 (45)
Andersson, Linda, 19 ... (18)
Fogelstrand, Per, 19 ... (17)
Ståhlman, Marcus, 19 ... (16)
Levin, Max, 1969 (11)
visa fler...
Adiels, Martin, 1976 (9)
Klevstig, Martina (8)
Olofsson, Sven-Olof, ... (7)
Omerovic, Elmir, 196 ... (7)
Mardani, Ismena (7)
Miljanovic, Azra, 19 ... (7)
Mattsson Hultén, Lil ... (6)
Lindbom, Malin, 1976 (6)
Henricsson, Marcus, ... (6)
Redfors, Björn (5)
Jeppsson, Anders, 19 ... (5)
Scharin Täng, Margar ... (5)
Drevinge, Christina, ... (5)
Mardinoglu, Adil (4)
Arif, Muhammad (4)
Lundqvist, Annika, 1 ... (4)
Gan, Li-Ming, 1969 (4)
Romeo, Stefano, 1976 (4)
Cinato, Mathieu (4)
Ekstrand, Matias (4)
Mardinoglu, Adil, 19 ... (3)
Ohlsson, Claes, 1965 (3)
Eriksson, P (3)
Orešič, Matej, 1967- (3)
Pirazzi, Carlo (3)
Jirholt, Pernilla, 1 ... (3)
Perkins, Rosie, 1965 (3)
Andersson, Bert, 195 ... (3)
Laudette, Marion, 19 ... (3)
Fazio, S. (2)
Bergström, Göran, 19 ... (2)
Johansson, Maria E, ... (2)
Taskinen, M. R. (2)
Björnson, Elias, 198 ... (2)
Teneberg, Susann, 19 ... (2)
Hyötyläinen, Tuulia, ... (2)
Yrlid, Ulf, 1971 (2)
Akyürek, Levent, 196 ... (2)
Ehrenborg, E (2)
Bergh, Niklas, 1979 (2)
Mancina, Rosellina M ... (2)
Bollano, Entela, 197 ... (2)
Mobini, Reza, 1965 (2)
Asin-Cayuela, Jorge (2)
visa färre...
Lärosäte
Göteborgs universitet (53)
Chalmers tekniska högskola (9)
Karolinska Institutet (9)
Kungliga Tekniska Högskolan (6)
Örebro universitet (4)
Lunds universitet (4)
visa fler...
Uppsala universitet (3)
Linköpings universitet (3)
Umeå universitet (2)
Stockholms universitet (1)
Högskolan i Gävle (1)
Högskolan i Skövde (1)
visa färre...
Språk
Engelska (54)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (46)
Naturvetenskap (8)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy