SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Li LX) "

Sökning: WFRF:(Li LX)

  • Resultat 1-25 av 46
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Rheinbay, E, et al. (författare)
  • Analyses of non-coding somatic drivers in 2,658 cancer whole genomes
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 102-
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of drivers of cancer has traditionally focused on protein-coding genes1–4. Here we present analyses of driver point mutations and structural variants in non-coding regions across 2,658 genomes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium5 of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). For point mutations, we developed a statistically rigorous strategy for combining significance levels from multiple methods of driver discovery that overcomes the limitations of individual methods. For structural variants, we present two methods of driver discovery, and identify regions that are significantly affected by recurrent breakpoints and recurrent somatic juxtapositions. Our analyses confirm previously reported drivers6,7, raise doubts about others and identify novel candidates, including point mutations in the 5′ region of TP53, in the 3′ untranslated regions of NFKBIZ and TOB1, focal deletions in BRD4 and rearrangements in the loci of AKR1C genes. We show that although point mutations and structural variants that drive cancer are less frequent in non-coding genes and regulatory sequences than in protein-coding genes, additional examples of these drivers will be found as more cancer genomes become available.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  • Wang, Y, et al. (författare)
  • Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer
  • 2022
  • Ingår i: Cell death and differentiation. - : Springer Science and Business Media LLC. - 1476-5403 .- 1350-9047. ; 29:11, s. 2190-2202
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of chemotherapy resistance is the most vital obstacle to clinical efficacy in gastric cancer (GC). The dysregulation of the Wnt/beta-catenin signaling pathway is critically associated with GC development and chemotherapy resistance. Ferroptosis is a form of regulated cell death, induced by an iron-dependent accumulation of lipid peroxides during chemotherapy. However, whether the Wnt/beta-catenin signaling directly controls resistance to cell death, remains unclear. Here, we show that the activation of the Wnt/beta-catenin signaling attenuates cellular lipid ROS production and subsequently inhibits ferroptosis in GC cells. The beta-catenin/TCF4 transcription complex directly binds to the promoter region of GPX4 and induces its expression, resulting in the suppression of ferroptotic cell death. Concordantly, TCF4 deficiency promotes cisplatin-induced ferroptosis in vitro and in vivo. Thus, we demonstrate that the aberrant activation of the Wnt/beta-catenin signaling confers ferroptosis resistance and suggests a potential therapeutic strategy to enhance chemo-sensitivity for advanced GC patients.
  •  
21.
  •  
22.
  •  
23.
  • Akdemir, KC, et al. (författare)
  • Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer
  • 2020
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 52:3, s. 294-
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromatin is folded into successive layers to organize linear DNA. Genes within the same topologically associating domains (TADs) demonstrate similar expression and histone-modification profiles, and boundaries separating different domains have important roles in reinforcing the stability of these features. Indeed, domain disruptions in human cancers can lead to misregulation of gene expression. However, the frequency of domain disruptions in human cancers remains unclear. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumor types, we analyzed 288,457 somatic structural variations (SVs) to understand the distributions and effects of SVs across TADs. Notably, SVs can lead to the fusion of discrete TADs, and complex rearrangements markedly change chromatin folding maps in the cancer genomes. Notably, only 14% of the boundary deletions resulted in a change in expression in nearby genes of more than twofold.
  •  
24.
  • Cortes-Ciriano, I, et al. (författare)
  • Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing
  • 2020
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 52:3, s. 331-
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromothripsis is a mutational phenomenon characterized by massive, clustered genomic rearrangements that occurs in cancer and other diseases. Recent studies in selected cancer types have suggested that chromothripsis may be more common than initially inferred from low-resolution copy-number data. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we analyze patterns of chromothripsis across 2,658 tumors from 38 cancer types using whole-genome sequencing data. We find that chromothripsis events are pervasive across cancers, with a frequency of more than 50% in several cancer types. Whereas canonical chromothripsis profiles display oscillations between two copy-number states, a considerable fraction of events involve multiple chromosomes and additional structural alterations. In addition to non-homologous end joining, we detect signatures of replication-associated processes and templated insertions. Chromothripsis contributes to oncogene amplification and to inactivation of genes such as mismatch-repair-related genes. These findings show that chromothripsis is a major process that drives genome evolution in human cancer.
  •  
25.
  • Du, CW, et al. (författare)
  • Arsenic trioxide reduces the invasive and metastatic properties of nasopharyngeal carcinoma cells in vitro
  • 2006
  • Ingår i: Brazilian journal of medical and biological research. - 0100-879X .- 1414-431X. ; 39:5, s. 677-685
  • Tidskriftsartikel (refereegranskat)abstract
    • Nasopharyngeal carcinoma (NPC) is notorious for the metastases, which are in close association with Epstein-Barr virus-encoded latent membrane protein 1 (LMP1). Arsenic trioxide (As2O3) has been shown to induce apoptosis and differentiation in NPC xenografts. Then, can it repress the cancer cells' metastasis potential? To elucidate this issue, the present study was performed. LMP1-negative cell line HNE1 and LMP1-positive cell line HNE1-LMP1 were used as in vitro model. Cells (1 × 105/mL) were cultured with or without 3 μM As2O3 for 48 h. Then the survival cells were collected to investigate their potential of colony formation, attachment, invasion, and migration. Both confocal immunofluorescence staining and Western blot were used to detect the changes of LMP1 expression. The changes of MMP-9 were examined by RT-PCR assay and Western blot. The results were as follow: i) the colony formation inhibition rate (75.41 ± 3.9% in HNE1-LMP1 cells vs 37.89 ± 4.9% in HNE1 cells), the rate of attachment (HNE1-LMP1 vs HNE1: 56.40 ± 3.5 vs 65.87 ± 5.9%), the invasion inhibitory rate (HNE1-LMP1 vs HNE1: 56.50 ± 3.7 and 27.91 ± 2.1%), and the migration inhibitory rate (HNE1-LMP1 vs HNE1: 48.70 ± 3.9 vs 29.19 ± 6.27%) were all significantly different between the two cell lines (P < 0.01). ii) LMP1 was down-regulated in As2O3-treated HNE1-LMP1 cells. iii) The reduction of MMP-9 was found in As2O3-treated groups, more evident in HNE1-LMP1 cells. Thus, we conclude that As2O3 can reduce metastasis potential of NPC cells, involving inhibition of MMP-9 expression. LMP1 were also reduced in this process and seemed to enhance anti-metastasis activity of As2O3. © 2006 Brazilian Journal of Medical and Biological Research.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 46

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy