SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lienard Julia) "

Sökning: WFRF:(Lienard Julia)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lienard, Julia, et al. (författare)
  • A Murine Mycobacterium marinum Infection Model for Longitudinal Analyses of Disease Development and the Inflammatory Response
  • 2023. - 2
  • Ingår i: Bacterial Pathogenesis : Methods and Protocols - Methods and Protocols. - 1064-3745 .- 1940-6029. - 9781071632451 - 9781071632437 ; 2674, s. 313-326
  • Bokkapitel (refereegranskat)abstract
    • Mycobacterial infections, including tuberculosis, are a major health problem globally. Prevention and treatments of tuberculosis are challenging due to the poor efficacy of the current vaccine and the emergence of drug-resistant strains. Therefore, it is critical to increase our basic understanding of mycobacterial virulence strategies as well as the host immune response during infection in the complex in vivo setting. While existing infection models provide valuable tools for investigating mycobacterial pathogenesis, they also exhibit limitations that can be addressed by the development of complementary models. Here we describe recent advances to the murine Mycobacterium marinum infection model, in which the bacteria produce a local infection restricted to the tail tissue. The M. marinum model has the advantage of mimicking some of the key hallmarks of human tuberculosis not replicated in the conventional murine Mycobacterium tuberculosis model, such as the formation of granulomas with central caseating necrosis and the spontaneous development of a latency-like stage. Moreover, the model is non-lethal and enables longitudinal analysis of disease development in live animals. In this chapter, we report protocols to prepare infected tissue samples for detailed and quantitative analysis of the immune response by flow cytometry, immunofluorescence microscopy, RT-qPCR, ELISA, and Western blot, as well as for the analysis of bacterial load and localization.
  •  
2.
  • Lienard, Julia, et al. (författare)
  • ESX-1 exploits type I IFN-signalling to promote a regulatory macrophage phenotype refractory to IFNγ-mediated autophagy and growth restriction of intracellular mycobacteria
  • 2016
  • Ingår i: Cellular Microbiology. - : Hindawi Limited. - 1462-5814. ; 18:10, s. 1471-1485
  • Tidskriftsartikel (refereegranskat)abstract
    • Summary: The ability of macrophages to eradicate intracellular pathogens is normally greatly enhanced by IFNγ, a cytokine produced mainly after onset of adaptive immunity. However, adaptive immunity is unable to provide sterilizing immunity against mycobacteria, suggesting that mycobacteria have evolved virulence strategies to inhibit the bactericidal effect of IFNγ-signalling in macrophages. Still, the host-pathogen interactions and cellular mechanisms responsible for this feature have remained elusive. We demonstrate that the ESX-1 type VII secretion systems of Mycobacterium tuberculosis and Mycobacteriummarinum exploit type I IFN-signalling to promote an IL-12low/IL-10high regulatory macrophage phenotype characterized by secretion of IL-10, IL-27 and IL-6. This mechanism had no impact on intracellular growth in the absence of IFNγ but suppressed IFNγ-mediated autophagy and growth restriction, indicating that the regulatory phenotype extends to function. The IFNγ-refractory phenotype was partly mediated by IL-27-signalling, establishing functional relevance for this downstream cytokine. These findings identify a novel macrophage-modulating function for the ESX-1 secretion system that may contribute to suppress the efficacy of adaptive immunity and provide mechanistic insight into the antagonistic cross talk between type I IFNs and IFNγ in mycobacterial infection.
  •  
3.
  • Lienard, Julia, et al. (författare)
  • Intragranuloma Accumulation and Inflammatory Differentiation of Neutrophils Underlie Mycobacterial ESX-1-Dependent Immunopathology
  • 2023
  • Ingår i: mBio. - 2161-2129. ; 14:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The conserved ESX-1 type VII secretion system is a major virulence determinant of pathogenic mycobacteria, including Mycobacterium tuberculosis and Mycobacterium marinum. ESX-1 is known to interact with infected macrophages, but its potential roles in regulating other host cells and immunopathology have remained largely unexplored. Using a murine M. marinum infection model, we identify neutrophils and Ly6C +MHCII + monocytes as the main cellular reservoirs for the bacteria. We show that ESX-1 promotes intragranuloma accumulation of neutrophils and that neutrophils have a previously unrecognized required role in executing ESX-1-mediated pathology. To explore if ESX-1 also regulates the function of recruited neutrophils, we performed a single-cell RNA-sequencing analysis that indicated that ESX-1 drives newly recruited uninfected neutrophils into an inflammatory phenotype via an extrinsic mechanism. In contrast, monocytes restricted the accumulation of neutrophils and immunopathology, demonstrating a major host-protective function for monocytes specifically by suppressing ESX-1-dependent neutrophilic inflammation. Inducible nitric oxide synthase (iNOS) activity was required for the suppressive mechanism, and we identified Ly6C +MHCII + monocytes as the main iNOS-expressing cell type in the infected tissue. These results suggest that ESX-1 mediates immunopathology by promoting neutrophil accumulation and phenotypic differentiation in the infected tissue, and they demonstrate an antagonistic interplay between monocytes and neutrophils by which monocytes suppress host-detrimental neutrophilic inflammation. IMPORTANCE The ESX-1 type VII secretion system is required for virulence of pathogenic mycobacteria, including Mycobacterium tuberculosis. ESX-1 interacts with infected macrophages, but its potential roles in regulating other host cells and immunopathology have remained largely unexplored. We demonstrate that ESX-1 promotes immunopathology by driving intragranuloma accumulation of neutrophils, which upon arrival adopt an inflammatory phenotype in an ESX-1-dependent manner. In contrast, monocytes limited the accumulation of neutrophils and neutrophil-mediated pathology via an iNOS-dependent mechanism, suggesting a major host-protective function for monocytes specifically by restricting ESX-1-dependent neutrophilic inflammation. These findings provide insight into how ESX-1 promotes disease, and they reveal an antagonistic functional relationship between monocytes and neutrophils that might regulate immunopathology not only in mycobacterial infection but also in other infections as well as in inflammatory conditions and cancer.
  •  
4.
  • Lienard, Julia, et al. (författare)
  • Murine Mycobacterium marinum infection as a model for tuberculosis
  • 2017
  • Ingår i: Methods in Molecular Biology. - New York, NY : Springer New York. - 1064-3745. ; 1535, s. 301-315
  • Bokkapitel (refereegranskat)abstract
    • Mycobacteria are a major human health problem globally. Regarding tuberculosis the situation is worsened by the poor efficacy of current vaccine regimens and by emergence of drug-resistant strains (Manjelievskaia J et al, Trans R Soc Trop Med Hyg 110: 110, 2016; Pereira et al., Lancet Infect Dis 12:300–306, 2012; http://www.who.int/tb/publications/global_report/en/) undermining both disease-prevention and available treatments. Thus, increased basic understanding of mycobacterial—and particularly Mycobacterium tuberculosis —virulence strategies and pathogenesis is of great importance. To this end several in vivo infection models are available (Guirado and Schlesinger, Front Immunol 4:98, 2013; Leung et al., Eur J Immunol 43:2246–2254, 2013; Patel et al., J Lab Physicians 3:75–79, 2011; van Leeuwen et al., Cold Spring Harb Perspect Med 5:a018580, 2015). While these models all have their merits they also exhibit limitations, and none perfectly mimics all aspects of human tuberculosis. Thus, there is a need for multiple models that may complement each other, ultimately allowing us to gain true insight into the pathogenesis of mycobacterial infections. Here, we describe a recently developed mouse model of Mycobacterium marinum infection that allows kinetic and quantitative studies of disease progression in live animals [8]. Notably, this model exhibits features of human tuberculosis not replicated in M. tuberculosis infected mice, and may provide an important complement to the field. For example, granulomas in the M. marinum model develop central caseating necrosis (Carlsson et al., PLoS Pathog 6:e1000895, 2010), a hallmark of granulomas in human tuberculosis normally not replicated in murine M. tuberculosis infection. Moreover, while tuberculosis is heterogeneous and presents with a continuum of active and latent disease, M. tuberculosis infected mice essentially lack this dynamic range and do not replicate latency (Guirado and Schlesinger, Front Immunol 4:98, 2013; Patel et al., J Lab Physicians 3(2):75–79, 2011). In contrast, M. marinum infected mice may naturally develop latency, as suggested by reduced inflammation and healing of the diseased tissue while low numbers of bacteria persist in granulomatous lesions (Carlsson et al., PLoS Pathog 6:e1000895, 2010). Thus, infection with M. marinum may offer a unique murine model for studying granuloma formation as well as latency— and possibly also for studies of disease-reactivation. In addition to the in vivo model, we describe infection of bone marrow-derived murine macrophages, an in vitro platform enabling detailed mechanistic studies of host-pathogen interactions occurring in the principal host target cell for pathogenic mycobacteria.
  •  
5.
  • Lienard, Julia, et al. (författare)
  • The Mycobacterium marinum ESX-1 system mediates phagosomal permeabilization and type I interferon production via separable mechanisms
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 117:2, s. 1160-1166
  • Tidskriftsartikel (refereegranskat)abstract
    • Following mycobacterial entry into macrophages the ESX-1 type VII secretion system promotes phagosomal permeabilization and type I IFN production, key features of tuberculosis pathogenesis. The current model states that the secreted substrate ESAT-6 is required for membrane permeabilization and that a subsequent passive leakage of extracellular bacterial DNA into the host cell cytosol is sensed by the cyclic GMP-AMP synthase (cGAS) and stimulator of IFN genes (STING) pathway to induce type I IFN production. We employed a collection of Mycobacterium marinum ESX-1 transposon mutants in a macrophage infection model and show that permeabilization of the phagosomal membrane does not require ESAT-6 secretion. Moreover, loss of membrane integrity is insufficient to induce type I IFN production. Instead, type I IFN production requires intact ESX-1 function and correlates with release of mitochondrial and nuclear host DNA into the cytosol, indicating that ESX-1 affects host membrane integrity and DNA release via genetically separable mechanisms. These results suggest a revised model for major aspects of ESX-1-mediated host interactions and put focus on elucidating the mechanisms by which ESX-1 permeabilizes host membranes and induces the type I IFN response, questions of importance for our basic understanding of mycobacterial pathogenesis and innate immune sensing.
  •  
6.
  • Movert, Elin, et al. (författare)
  • Streptococcal M protein promotes IL-10 production by cGAS-independent activation of the STING signaling pathway
  • 2018
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7374 .- 1553-7366. ; 14:3
  • Tidskriftsartikel (refereegranskat)abstract
    • From an evolutionary point of view a pathogen might benefit from regulating the inflammatory response, both in order to facilitate establishment of colonization and to avoid life-threatening host manifestations, such as septic shock. In agreement with this notion Streptococcus pyogenes exploits type I IFN-signaling to limit detrimental inflammation in infected mice, but the host-pathogen interactions and mechanisms responsible for induction of the type I IFN response have remained unknown. Here we used a macrophage infection model and report that S. pyogenes induces anti-inflammatory IL-10 in an M protein-dependent manner, a function that was mapped to the B- and C-repeat regions of the M5 protein. Intriguingly, IL-10 was produced downstream of type I IFN-signaling, and production of type I IFN occurred via M protein-dependent activation of the STING signaling pathway. Activation of STING was independent of the cytosolic double stranded DNA sensor cGAS, and infection did not induce detectable release into the cytosol of either mitochondrial, nuclear or bacterial DNA–indicating DNA-independent activation of the STING pathway in S. pyogenes infected macrophages. These findings provide mechanistic insight concerning how S. pyogenes induces the type I IFN response and identify a previously unrecognized macrophage-modulating role for the streptococcal M protein that may contribute to curb the inflammatory response to infection.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy