SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liin Sara 1982 ) "

Sökning: WFRF:(Liin Sara 1982 )

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bohannon, Briana M, et al. (författare)
  • Mechanistic insights into robust cardiac I Ks potassium channel activation by aromatic polyunsaturated fatty acid analogues
  • 2023
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Voltage-gated potassium (K V ) channels are important regulators of cellular excitability and control action potential repolarization in the heart and brain. K V channel mutations lead to disordered cellular excitability. Loss-of-function mutations, for example, result in membrane hyperexcitability, a characteristic of epilepsy and cardiac arrhythmias. Interventions intended to restore K V channel function have strong therapeutic potential in such disorders. Polyunsaturated fatty acids (PUFAs) and PUFA analogues comprise a class of K V channel activators with potential applications in the treatment of arrhythmogenic disorders such as Long QT Syndrome (LQTS). LQTS is caused by a loss-of-function of the cardiac I Ks channel - a tetrameric potassium channel complex formed by K V 7.1 and associated KCNE1 protein subunits. We have discovered a set of aromatic PUFA analogues that produce robust activation of the cardiac I Ks channel and a unique feature of these PUFA analogues is an aromatic, tyrosine head group. We determine the mechanisms through which tyrosine PUFA analogues exert strong activating effects on the I Ks channel by generating modified aromatic head groups designed to probe cation-pi interactions, hydrogen bonding, and ionic interactions. We found that tyrosine PUFA analogues do not activate the I Ks channel through cation-pi interactions, but instead do so through a combination of hydrogen bonding and ionic interactions.
  •  
2.
  • Larsson, Johan, 1990-, et al. (författare)
  • Combining endocannabinoids with retigabine for enhanced M-channel effect and improved KV7 subtype selectivity
  • 2020
  • Ingår i: The Journal of General Physiology. - : ROCKEFELLER UNIV PRESS. - 0022-1295 .- 1540-7748. ; 152:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Retigabine is unique among anticonvulsant drugs by targeting the neuronal M-channel, which is composed of KV7.2/KV7.3 and contributes to the negative neuronal resting membrane potential. Unfortunately, retigabine causes adverse effects, which limits its clinical use. Adverse effects may be reduced by developing M-channel activators with improved KV7 subtype selectivity. The aim of this study was to evaluate the prospect of endocannabinoids as M-channel activators, either in isolation or combined with retigabine. Human KV7 channels were expressed in Xenopus laevis oocytes. The effect of extracellular application of compounds with different properties was studied using two-electrode voltage clamp electrophysiology. Site-directed mutagenesis was used to construct channels with mutated residues to aid in the mechanistic understanding of these effects. We find that arachidonoyl-L-serine (ARA-S), a weak endocannabinoid, potently activates the human M-channel expressed in Xenopus oocytes. Importantly, we show that ARA-S activates the M-channel via a different mechanism and displays a different KV7 subtype selectivity compared with retigabine. We demonstrate that coapplication of ARA-S and retigabine at low concentrations retains the effect on the M-channel while limiting effects on other KV7 subtypes. Our findings suggest that improved KV7 subtype selectivity of M-channel activators can be achieved through strategically combining compounds with different subtype selectivity.
  •  
3.
  • Larsson, Johan, 1990- (författare)
  • Molecular mechanisms of modulation of KV7 channels by polyunsaturated fatty acids and their analogues
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Ion channels are membrane proteins that regulate the permeability of ions across the cell membrane. The sequential opening of different types of ion channels produces action potentials in excitable cells. Action potentials are a way for the body to, for example, transmit signals quickly over a long distance.The KV7 family is an important group of voltage-gated potassium channels. Mutations that cause dysfunction in members of the KV7 family are associated with several forms of disease. Compounds that can activate KV7 channels have previously been shown to work as medical treatments. However, the previously available antiepileptic drug retigabine, has been withdrawn due to adverse effects. Thus, there is a need for further development of compounds that target these channels. PUFA and PUFA analogs have previously been demonstrated to activate KV7.1 through an electrostatic mechanism. This thesis investigates new aspects of the interaction between KV7 channels and PUFA-related compounds.The data in this thesis are from human KV7 channels expressed in Xenopus laevis oocytes. The currents produced by the channels expressed in the oocytes have been studied using twoelectrode voltage clamp. Our aim was to study the mechanism for the activation of KV7 channels by PUFA and PUFA analogs. More specifically, we intended to study why the beta subunit KCNE1 abolishes the activating effect of PUFA on KV7.1 and how PUFAs activate KV7.2 and KV7.3. Additionally, we wanted to study aspects that may affect whether these compounds are viable as medical treatments. For instance, whether these compounds can activate channels containing disease-causing mutations and whether we can improve compound selectivity towards certain KV7 channels.In Paper I, we introduce disease-causing mutations found in patients into KV7.1 and KCNE1. The characterization showed that these channels had altered biophysical properties compared to wild type channels. A PUFA analog was found to activate and, to a large degree, restore wild type-like biophysical properties in the mutated channels regardless of the localization of the mutation in the channel.In Paper II, we demonstrate why PUFA is unable to activate KV7.1 co-expressed with beta subunit KCNE1. KCNE1 induces a conformational change of KV7.1 that moves the S5-Phelix loop closer to the PUFA binding site. This causes negative charges of the loop to attract protons that reduce local pH at the PUFA binding site. The decreased local pH leads to protonation of PUFA and the PUFAs therefore lose their negative charge. Thus, PUFA cannot activate KV7.1 when it is co-expressed with KCNE1.In Paper III, we study a group of PUFA-related substances, endocannabinoids, on KV7 channels. One endocannabinoid, Arachidonoyl-L-Serine (ARA-S), was identified as a potent activator of the neuronal M-channel, comprising KV7.2 and KV7.3 heteromers. We study the activating mechanism of ARA-S in KV7.2 and KV7.3, demonstrating how the activating effect is linked to two parts of the channel protein, one in the voltage sensor domain and the other in the pore domain. ARA-S was also found to activate KV7.1 and KV7.5 but not KV7.4, which instead was inhibited. Retigabine, a compound that activates the M-channel but has a different KV7 subtype selectivity compared to ARA-S, was used in combination with ARA-S to maintain a potent effect on the M-channel while limiting the activation of other KV7 channels.In conclusion, the activating effect of PUFA analogs on KV7 channels may be helpful in the development of future drug candidates for diseases such as arrhythmia and epilepsy.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy