SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lin Junliang) "

Sökning: WFRF:(Lin Junliang)

  • Resultat 1-25 av 55
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Chen, Hong, et al. (författare)
  • PKU-3 : An HCI-Inclusive Aluminoborate for Strecker Reaction Solved by Combining RED and PXRD
  • 2015
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 137:22, s. 7047-7050
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel microporous aluminoborate, denoted as PKU-3, was prepared by the boric acid flux method. The structure of PKU-3 was determined by combining the rotation electron diffraction and synchrotron powder X-ray diffraction data with well resolved ordered Cl- ions in the channel. Composition and crystal structure analysis showed that there are both proton and chlorine ions in the channels. Part of these protons and chlorine ions can be washed away by basic solutions to activate the open pores. The washed PKU-3 can be used as an efficient catalyst in the Strecker reaction with yields higher than 90%.
  •  
3.
  • Chen, Yanping, et al. (författare)
  • PKU-20 : A new silicogermanate constructed from sti and asv layers
  • 2016
  • Ingår i: Microporous and Mesoporous Materials. - : Elsevier BV. - 1387-1811 .- 1873-3093. ; 224, s. 384-391
  • Tidskriftsartikel (refereegranskat)abstract
    • A new silicogermanate (PKU-20) was hydrothermally synthesized using triethylisopropylammonium cation as the structure directing agent in the presence of fluoride. Its structure was determined from a combination of synchrotron single crystal X-ray diffraction and powder X-ray diffraction data. PKU-20 crystallizes in the monoclinic space group C2/m, with the lattice parameters of a = 18.5901(6) angstrom, b = 13.9118 (4) angstrom, c = 22.2614(7) angstrom and beta = 100.1514 (12)degrees. The framework of PKU-20 is constructed from an alternate stacking of sti and asv layers. The sti layer is exactly the same as that in the STI framework, while the asv layer is a new layer sliced off from the ASV framework parallel to the (112) plane. The takeout scheme of the layer is discussed on the basis of a composite building unit D4R-/au-D4R. PKU-20 possesses a two-dimensional channel system, where the 10-ring channels parallel to the [010] direction are intercrossed by 12-ring pockets along the [101] direction.
  •  
4.
  • Li, Jian, et al. (författare)
  • Discovery of Complex Metal Oxide Materials by Rapid Phase Identification and Structure Determination
  • 2019
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 141:12, s. 4990-4996
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of new inorganic functional materials is of fundamental importance in synthetic and materials science. In the past, the discovering new materials relied on a slow and serendipitous trial-and-error process, especially in the well-studied oxide systems. Here, we presented a strategy to shorten the period of discovery of new complex metal oxide materials by rapid phase identification and structure determination with 3D electron diffraction (ED) techniques, which do not require pure samples or single crystal growth. With such strategy, three new complex metal oxide materials (BiTi0.855Fe1.145O4.93, BiTi4FeO11 and BiTi2FeO7) were discovered in the simple ternary Bi2O3-Fe2O3-TiO2 system. To our best knowledge, it is the first time to discover three new complex metal oxide materials with new structure types in a single study of ternary metal oxide system. The structures of new materials were refined by combining powder X-ray diffraction (PXRD) with powder neutron diffraction (PND). The most striking feature in this system is that BiTi0.855Fe1.145O4.93 presents edge-shared five-coordinated iron/titanium polyhedra. In addition, another new phase BiTi4GaO11, which is isostructural with BiTi4FeO11, can be obtained when replacing Fe in BiTi4FeO11 with Ga. The band structure investigation of BiTi0.855Fe1.145O4.93, BiTi4FeO11, BiTi2FeO7 and BiTi4GaO11 shown that they were semiconductors with band gaps of 1.65, 2.0, 1.9, and 2.8 eV, respectively. Although this study focused on rapid developing of new inorganic functional materials, this method for developing new materials is available to all fields in chemistry and material chemistry where the limiting factors are impurity, submicrometersized crystals, etc.
  •  
5.
  • Li, Jian, et al. (författare)
  • Modulated structure determination and ion transport mechanism of oxide-ion conductor CeNbO4+δ
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • CeNbO4+δ, a family of oxygen hyperstoichiometry materials with varying oxygen content (CeNbO4, CeNbO4.08, CeNbO4.25, CeNbO4.33) that shows mixed electronic and oxide ionic conduction, has been known for four decades. However, the oxide ionic transport mechanism has remained unclear due to the unknown atomic structures of CeNbO4.08 and CeNbO4.33. Here, we report the complex (3 + 1)D incommensurately modulated structure of CeNbO4.08, and the supercell structure of CeNbO4.33 from single nanocrystals by using a three-dimensional electron diffraction technique. Two oxide ion migration events are identified in CeNbO4.08 and CeNbO4.25 by molecular dynamics simulations, which was a synergic-cooperation knock-on mechanism involving continuous breaking and reformation of Nb2O9 units. However, the excess oxygen in CeNbO4.33 hardly migrates because of the high concentration and the ordered distribution of the excess oxide ions. The relationship between the structure and oxide ion migration for the whole series of CeNbO4+δ compounds elucidated here provides a direction for the performance optimization of these compounds.
  •  
6.
  • Liang, Lin, et al. (författare)
  • Non-Interpenetrated Single-Crystal Covalent Organic Frameworks
  • 2020
  • Ingår i: Angewandte Chemie International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 59:41, s. 17991-17995
  • Tidskriftsartikel (refereegranskat)abstract
    • Growth of covalent organic frameworks (COFs) as single crystals is extremely challenging. Inaccessibility of open-structured single-crystal COFs prevents the exploration of structure-oriented applications. Herein we report for the first time a non-interpenetrated single-crystal COF, LZU-306, which possesses the open structure constructed exclusively via covalent assembly. With a high void volume of 80 %, LZU-306 was applied to investigate the intrinsic dynamics of reticulated tetraphenylethylene (TPE) as the individual aggregation-induced-emission moiety. Solid-state(2)H NMR investigation has determined that the rotation of benzene rings in TPE, being the freest among the reported cases, is as fast as 1.0x10(4) Hz at 203 K to 1.5x10(7) Hz at 293 K. This research not only explores a new paradigm for single-crystal growth of open frameworks, but also provides a unique matrix-isolation platform to reticulate functional moieties into a well-defined and isolated state.
  •  
7.
  • Lin, Junzhong, et al. (författare)
  • Hierarchical MFI zeolite synthesized via regulating the kinetic of dissolution-recrystallization and their catalytic properties
  • 2018
  • Ingår i: Catalysis communications. - : Elsevier BV. - 1566-7367 .- 1873-3905. ; 115, s. 82-86
  • Tidskriftsartikel (refereegranskat)abstract
    • Hierarchical MFI zeolites with open pores were synthesized by a temperature programmed dissolution-recrystallization post-treatment. By controlling the temperature of post-treatment using TPAOH, open macropores and mesopores were created by simply regulating the kinetics of dissolution and recrystallization. Benzyl alcohol self-etherification reaction, which only occurs in micropores, was tested on ZSM-5 to understand the effect of hierarchical pore system. The catalytic activity of hierarchical TS-1 was tested with cyclohexanone ammoximation. Hierarchical ZSM-5 and TS-1 zeolites with open pores showed higher catalytic activity compared with both hollow and conventional ones. The increased catalytic activities can be ascribed to the enhanced diffusion.
  •  
8.
  • Lin, Jia, et al. (författare)
  • Pressure-induced semiconductor-to-metal phase transition of a charge-ordered indium halide perovskite
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 116:47, s. 23404-23409
  • Tidskriftsartikel (refereegranskat)abstract
    • Phase transitions in halide perovskites triggered by external stimuli generate significantly different material properties, providing a great opportunity for broad applications. Here, we demonstrate an In-based, charge-ordered (In+/In3+) inorganic halide perovskite with the composition of Cs2In(I)In(III)Cl-6 in which a pressure-driven semiconductor-to-metal phase transition exists. The single crystals, synthesized via a solid-state reaction method, crystallize in a distorted perovskite structure with space group I4/m with a = 17.2604(12) angstrom, c = 11.0113(16) angstrom if both the strong reflections and superstructures are considered. The supercell was further confirmed by rotation electron diffraction measurement. The pressure-induced semiconductor-to-metal phase transition was demonstrated by high-pressure Raman and absorbance spectroscopies and was consistent with theoretical modeling. This type of charge-ordered inorganic halide perovskite with a pressure-induced semiconductor-to-metal phase transition may inspire a range of potential applications.
  •  
9.
  • Meng, Qingpeng, et al. (författare)
  • Zeolite A synthesized from alkaline assisted pre-activated halloysite for efficient heavy metal removal in polluted river water and industrial wastewater
  • 2017
  • Ingår i: Journal of Environmental Sciences(China). - : Elsevier BV. - 1001-0742 .- 1878-7320. ; 56, s. 254-262
  • Tidskriftsartikel (refereegranskat)abstract
    • High quality zeolite A was synthesized through a hydrothermal process using alkaline-assisted pre-activated halloysite mineral as the alumina and silica source. The synthesis conditions employed in this study were finely tuned by varying the activating temperature, sodium hydroxide content, water content and Si/Al ratio. The obtained zeolite A showed excellent adsorption properties for both single metal cation solutions and mixed cation solutions when the concentrations of the mixed cations were comparable with those in polluted natural river water and industrial wastewater. High adsorptive capacities for Ag+ (123.05 mg/g) and Pb2+ (227.70 mg/g) were achieved using the synthesized zeolite A. This observation indicates that the zeolite A synthesized from alkaline-assisted pre-activated halloysite can be used as a low-cost and relatively effective adsorbent to purify heavy metal cation polluted natural river water and industrial wastewater.
  •  
10.
  • Xu, Hai-Sen, et al. (författare)
  • Single crystal of a one-dimensional metallo-covalent organic framework
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Although polymers have been studied for well over a century, there are few examples of covalently linked polymer crystals synthesised directly from solution. One-dimensional (1D) covalent polymers that are packed into a framework structure can be viewed as a 1D covalent organic framework (COF), but making a single crystal of this has been elusive. Herein, by combining labile metal coordination and dynamic covalent chemistry, we discover a strategy to synthesise single-crystal metallo-COFs under solvothermal conditions. The single-crystal structure is rigorously solved using single-crystal electron diffraction technique. The non-centrosymmetric metallo-COF allows second harmonic generation. Due to the presence of syntactic pendant amine groups along the polymer chains, the metallopolymer crystal can be further cross-linked into a crystalline woven network. Although polymers have been studied for well over a century, there are few examples of covalently linked polymer crystals synthesized directly from solution. Here, the authors demonstrate a strategy to synthesize single crystalline 1D metallo-covalent organic frameworks by combining dynamic covalent chemistry and metal-ligand coordination.
  •  
11.
  • Xu, Le, et al. (författare)
  • Crystallization of a Novel Germanosilicate ECNU-16 Provides Insights into the Space-Filling Effect on Zeolite Crystal Symmetry
  • 2018
  • Ingår i: Chemistry - A European Journal. - : Wiley. - 0947-6539 .- 1521-3765. ; 24:37, s. 9247-9253
  • Tidskriftsartikel (refereegranskat)abstract
    • Synthesis of new zeolites involving organic molecules relies heavily on the trial-and-error approach, because it is difficult to interpret the determining effects of organics on zeolite crystal symmetry. Here, the intrinsic relationships among the space-filling of organics, included volume of channels, and zeolite crystal symmetry, are systematically demonstrated by experimental and computational means. Under controlled conditions, the dimer and monomer organics of 1-ethyl-3-methylimidazolium selectively direct different, but related, germanosilicates, the ECNU-16 with a new topology and the existing IM-16 with the UOS topology, respectively. The comprehensive computational study reveals that the zeolite phase selectivity is determined by the unique space-filling behavior of the dimer and monomer organics, which is closely correlated to their rotation freedom, as well as the included volume of host zeolite channels. The elucidation of this crucial space-filling effect from the fundamental viewpoint will provide new guidelines for the rational design and synthesis of new zeolites in future.
  •  
12.
  •  
13.
  • Cao, Lingyun, et al. (författare)
  • Self-Supporting Metal–Organic Layers as Single-Site Solid Catalysts
  • 2016
  • Ingår i: Angewandte Chemie International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 55:16, s. 4962-4966
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal–organic layers (MOLs) represent an emerging class of tunable and functionalizable two-dimensional materials. In this work, the scalable solvothermal synthesis of self-supporting MOLs composed of [Hf6O4(OH)4(HCO2)6] secondary building units (SBUs) and benzene-1,3,5-tribenzoate (BTB) bridging ligands is reported. The MOL structures were directly imaged by TEM and AFM, and doped with 4′-(4-benzoate)-(2,2′,2′′-terpyridine)-5,5′′-dicarboxylate (TPY) before being coordinated with iron centers to afford highly active and reusable single-site solid catalysts for the hydrosilylation of terminal olefins. MOL-based heterogeneous catalysts are free from the diffusional constraints placed on all known porous solid catalysts, including metal–organic frameworks. This work uncovers an entirely new strategy for designing single-site solid catalysts and opens the door to a new class of two-dimensional coordination materials with molecular functionalities.
  •  
14.
  • Chen, Fei-Jian, et al. (författare)
  • Structure-direction towards the new large pore zeolite NUD-3
  • 2021
  • Ingår i: Chemical Communications. - : Royal Society of Chemistry (RSC). - 1359-7345 .- 1364-548X. ; 57:2, s. 191-194
  • Tidskriftsartikel (refereegranskat)abstract
    • The new zeolite NUD-3 possesses a three-dimensional system of large pore channels that is topologically identical to those of ITQ-21 and PKU-14. However, the three zeolites have distinctly different frameworks: a particular single 4-membered ring inside the denser portion of the zeolite is missing in PKU-14, disordered in ITQ-21 and fully ordered in NUD-3. We document these differences and use molecular simulations to unravel the mechanism by which a particular structure directing agent dication, 1,1′-(1,2-phenylenebis(methylene))bis(3-methylimidazolium), is able to orient this inner ring.
  •  
15.
  • Cong, Rihong, et al. (författare)
  • Syntheses and Crystal Structures of Two New Bismuth Hydroxyl Borates Containing [Bi(2)O(2)](2+) Layers : Bi(2)O(2)[B(3)O(5)(OH)] and Bi(2)O(2)[BO(2)(OH)]
  • 2011
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 50:11, s. 5098-5104
  • Tidskriftsartikel (refereegranskat)abstract
    • Two new bismuth hydroxyl borates, Bi(2)O(2)[B(3)O5-(OH)] (I) and Bi(2)O(2)[BO(2)(OH)] (II), have been synthesized under hydrothermal conditions. Their structures were determined by single-crystal and powder X-ray diffraction data, respectively. Compound I crystallizes in the orthorhombic space group Pbca with the lattice constants of a = 6.0268(3) angstrom, b = 11.3635(6) angstrom, and c = 19.348(1) angstrom. Compound II crystallizes in the monoclinic space group Cm with the lattice constants of a = 5.4676(6) angstrom, b = 14.6643(5) angstrom, c = 3.9058(1) angstrom, and beta = 135.587(6)degrees. The borate fundamental building block (FBB) in I is a three-ring unit [B(3)O(6)(OH)](4-), which connects one by one via sharing corners, forming an infinite zigzag chain along the a direction. The borate chains are further linked by hydrogen bonds, showing as a borate layer within the ab plane. The FBB in II is an isolated [BO(2)(OH)](2-) triangle, which links to two neighboring FBBs by strong hydrogen bonds, resulting in a borate chain along the a direction. Both compounds contain [Bi(2)O(2)](2+) layers, and the [Bi(2)O(2)](2+) layers combine with the corresponding borate layers alternatively, forming the whole structures. These two new bismuth borates are the first ones containing [Bi(2)O(2)](2+) layers in borates. The appearance of Bi(2)O(2)[BO(2)(OH)] (II) completes the series of compounds Bi(2)O(2)[BO(2)(OH)], Bi(2)O(2)CO(3), and Bi(2)O(2)[NO(3)(OH)] and the formation of Bi(2)O(2)[B(3)O(5)(OH)] provides another example in demonstrating the polymerization tendency of borate groups.
  •  
16.
  • Cong, Rihong, et al. (författare)
  • Syntheses, Structure, and Luminescent Properties of Novel Hydrated Rare Earth Borates Ln(2)B(6)O(10)(OH)(4)center dot H(2)O (Ln = Pr, Nd, Sm, Eu, Gd, Dy, Ho, and Y)
  • 2011
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 50:5, s. 1767-1774
  • Tidskriftsartikel (refereegranskat)abstract
    • Ln(2)B(6)O(10)(OH)(4)center dot H(2)O (Ln = Pr, Nd, Sm-Gd, Dy, Ho, and Y), a new series of hydrated rare earth borates, have been synthesized under hydrothermal conditions. A single crystal of Nd analogue was used for the structure determination by X-ray diffraction. It crystallizes in the monoclinic space group C2/c with lattice constants a = 21.756(4), b = 4.3671(9), c = 12.192(2) angstrom, and beta = 108.29(3)degrees. The other compounds are isostructural to Nd(2)B(6)O(10)(OH)(4)center dot H(2)O. The fundamental building block (FBB) of the polyborate anion in this structure is a three-membered ring [B(3)O(6)(OH)(2)](5-). The FBBs are connected by sharing oxygen atoms forming an infinite [B(3)O(5)(OH)(2)](3-) chain, and the chains are linked by hydrogen bonds, establishing a two-dimensional (2-D) [B(610)(OH)(4)center dot H(2)O](6-) layer. The 2-D borate layers are thus interconnected by Ln(3+) ions to form the complex three-dimensional structure. Ln(2)B(6)O(10)(OH)(4)center dot H(2)O dehydrates stepwise, giving rise to two new intermediate compounds Ln(2)B(6)O(10)(OH)(4) and Ln(2)B(6)O(11) (OH)(2). The investigation on the luminescent properties of Gd(2-2x)Eu(2x)B(6)O(10)(OH)(4)center dot H(2)O (x = 0.01-1.00) shows a high efficiency of Eu(3+) f-f transitions and the existence of the energy transfer process from Gd(3+) to Eu(3+). Eu(2)B(6)O(10)(OH)(4)center dot H(2)O and its two dehydrated products, Eu(2)B(6)O(10)(OH)(4) and Eu(2)B(6)O(11)(OH)(2), present the strongest emission peak at 620 nm ((5)D(0) -> (7)F(2) transition), which may be potential red phosphors.
  •  
17.
  • Dai, Ruihan, et al. (författare)
  • Electron crystallography reveals atomic structure of metal-organic nanoplate with Hf12(µ3-O)8(µ3-OH)8(µ2-OH)6 secondary building unit
  • 2017
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 56:14, s. 8128-8134
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanoscale metal–organic frameworks (nMOFs) have shown tremendous potential in cancer therapy and biomedical imaging. However, their small dimensions present a significant challenge in structure determination by single-crystal X-ray crystallography. We report here the structural determination of nMOFs by rotation electron diffraction (RED). Two isostructural Zr- and Hf-based nMOFs with linear biphenyldicarboxylate (BPDC) or bipyridinedicarboxylate (BPYDC) linkers are stable under intense electron beams to allow the collection of high-quality RED data, which reveal a MOF structure with M12(μ3-O)8(μ3-OH)8(μ2-OH)6 (M = Zr, Hf) secondary building units (SBUs). The nMOF structures differ significantly from their UiO bulk counterparts with M6(μ3-O)4(μ3-OH)4 SBUs and provide the foundation for clarifying the structures of a series of previously reported nMOFs with significant potential in cancer therapy and biological imaging. Our work clearly demonstrates the power of RED in determining nMOF structures and elucidating the formation mechanism of distinct nMOF morphologies.
  •  
18.
  •  
19.
  • Ding, Huimin, et al. (författare)
  • An AIEgen-based 3D covalent organic framework for white light-emitting diodes
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • The design and synthesis of three-dimensional covalent organic frameworks (3D COFs) have still been considered as a big challenge. Here we report the design and synthesis of an AIEgen-based 3D COF (3D-TPE-COF), with a high surface area (1084 m(2)g(-1)). According to powder X-ray diffraction and continuous rotation electron diffraction analyses, 3D-TPE-COF is identified to adopt a seven-fold interpenetrated pts topology. Interestingly, 3D-TPE-COF emits yellow fluorescence upon excitation, with a photoluminescence quantum yield of 20%. Moreover, by simply coating 3D-TPE-COF onto a commercial blue light-emitting diode (LED), a prototype white LED (WLED) under continuously driving without degradation for 1200 h was demonstrated. The present work suggests the possibility of using COF materials for stable WLEDs, which will greatly inspire us to design and synthesize fluorescent 3D COFs and facilitate the development of COF-based WLEDs in future.
  •  
20.
  • Gao, Chao, et al. (författare)
  • Isostructural Three-Dimensional Covalent Organic Frameworks
  • 2019
  • Ingår i: Angewandte Chemie International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 58:29, s. 9770-9775
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein, we reported the designed synthesis of three isostructural three-dimensional covalent organic frameworks (3D COFs) with -H, -Me, or -F substituents, which have similar crystallinity and topology. Their crystal structures were determined by continuous rotation electron diffraction (cRED), and all three 3D COFs were found to adopt a fivefold interpenetrated pts topology. More importantly, the resolution of these cRED datasets reached up to 0.9-1.0 angstrom, enabling the localization of all non-hydrogen atomic positions in a COF framework directly by 3D ED techniques for the first time. In addition, the precise control of the pore environments through the use of different functional groups led to different selectivities for CO2 over N-2. We have thus confirmed that polycrystalline COFs can be definitely studied to the atomic level as other materials, and this study should also inspire the design and synthesis of 3D COFs with tailored pore environments for interesting applications.
  •  
21.
  • Gao, Zihao Rei, et al. (författare)
  • HPM-14 : A New Germanosilicate Zeolite with Interconnected Extra-Large Pores Plus Odd-Membered and Small Pores
  • 2021
  • Ingår i: Angewandte Chemie International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 60:7, s. 3438-3442
  • Tidskriftsartikel (refereegranskat)abstract
    • HPM-14 is a new extra-large pore zeolite synthesized using imidazolium-based organic structure-directing agents (SDAs), fluoride anions, and germanium and silicon as tetrahedral components of the framework. Owing to the presence of stacking disorder, the structure elucidation of HPM-14 was challenging, and different techniques were necessary to clarify the details of the structure and to understand the nature of the disorder. The structure has been solved by three-dimensional electron-diffraction technique (3D ED) and consists of an intergrowth of two polymorphs possessing a three-dimensional channel system, including an extra-large pore opened through windows made up of sixteen tetrahedral atoms (16-membered ring, 16MR) as well as two additional sets of odd-membered (9MR) and small (8MR) pores. The intergrowth has been studied by scanning transmission electron microscopy (C-s-STEM) and powder X-ray diffraction simulations (DIFFaX), which show a large predominance of the monoclinic polymorph A.
  •  
22.
  • Hua, Wei, et al. (författare)
  • A Germanosilicate Structure with 11 x 11 x 12-Ring Channels Solved by Electron Crystallography
  • 2014
  • Ingår i: Angewandte Chemie International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 53:23, s. 5868-5871
  • Tidskriftsartikel (refereegranskat)abstract
    • Zeolites have been widely used in industry owing to their ordered micropores and stable frameworks. The pore sizes and shapes are the key parameters that affect the selectivity and efficiency in their applications in catalysis, sorption, and separation. Zeolites with pores defined by 10 and 12 TO4 tetrahedra are often used for various catalytic processes. To optimize the performance of zeolites, it is extremely desirable to fine-tune the pore sizes/shapes. The first germanosilicate zeolite with a three-dimensional 11 x 11 x 12-ring channel system, PKU-16 (PKU, Peking University) is presented. Nanosized PKU-16 was structurally characterized by the new three-dimensional rotation electron diffraction (RED) technique. PKU-16 is structurally related to the zeolite beta polymorph C (BEC, 12 x 12 x 12-ring channels) by rotating half of the four-rings in double mtw units.
  •  
23.
  •  
24.
  • Li, Jian, et al. (författare)
  • Atomic-resolution structures from polycrystalline covalent organic frameworks with enhanced cryo-cRED
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The pursuit of atomic precision structure of porous covalent organic frameworks (COFs) is the key to understanding the relationship between structures and properties, and further developing new materials with superior performance. Yet, a challenge of how to determine their atomic structures has always existed since the first COFs reported seventeen years ago. Here, we present a universal method for ab initio structure determination of polycrystalline three-dimensional (3D) COFs at atomic level using enhanced cryo-continuous rotation electron diffraction (cryo-cRED), which combines hierarchical cluster analysis with cryo-EM technique. The high-quality datasets possess not only up to 0.79-angstrom resolution but more than 90% completeness, leading to unambiguous solution and precise refinement with anisotropic temperature factors. With such a powerful method, the dynamic structures with flexible linkers, degree of interpenetration, position of functional groups, and arrangement of ordered guest molecules are successfully revealed with atomic precision in five 3D COFs, which are almost impossible to be obtained without atomic resolution structure solution. This study demonstrates a practicable strategy for determining the structures of polycrystalline COFs and other beam-sensitive materials and to help in the future discovery of novel materials on the other. 
  •  
25.
  • Liang, Jie, et al. (författare)
  • A 3D 12-Ring Zeolite with Ordered 4-Ring Vacancies Occupied by (H2O)(2) Dimers
  • 2014
  • Ingår i: Chemistry - A European Journal. - : Wiley. - 0947-6539 .- 1521-3765. ; 20:49, s. 16097-16101
  • Tidskriftsartikel (refereegranskat)abstract
    • A germanate zeolite, PKU-14, with a three- dimensional large-pore channel system was structurally characterized by a combination of high-resolution powder X-ray diffraction, rotation electron diffraction, NMR, and IR spectroscopy. Ordered Ge4O4 vacancies inside the [4(6).6(12)] cages has been found in PKU-14, in which a unique (H2O)(2) dimer was located at the vacancies and played a structure-directing role. It is the first time that water clusters are found to be templates for ordered framework vacancies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 55

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy