SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lindqvist Per Arne) "

Sökning: WFRF:(Lindqvist Per Arne)

  • Resultat 1-25 av 370
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lee, Justin H., et al. (författare)
  • MMS Measurements and Modeling of Peculiar Electromagnetic Ion Cyclotron Waves
  • 2019
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007.
  • Tidskriftsartikel (refereegranskat)abstract
    • Orbiting Earth's dayside outer magnetosphere on 29 September 2015, the Magnetospheric Multiscale (MMS) satellites measured plasma composition, simultaneous electromagnetic ion cyclotron waves, and intermittent fast plasma flows consistent with ultralow frequency waves or convection. Such flows can accelerate typically unobservable low-energy plasma into a measurable energy range of spacecraft plasma instrumentation. We exploit the flow occurrence to ensure measurement of cold ion species alongside the hot particles-consisting of ionospheric heavy ions and solar wind He++-during a subinterval of wave emissions with spectral properties previously described as peculiar. Through application of the composition and multisatellite wave vector data to linear theory, we demonstrate the emissions are in fact consistent with theory, growing naturally in the He++ band with sufficient free energy.
  •  
2.
  • Liu, Hongyuan, et al. (författare)
  • Characterisation of rock aggregate breakage properties using realistic texture-based modelling
  • 2012
  • Ingår i: International Journal for Numerical and Analytical Methods in Geomechanics. - : Wiley. - 0363-9061 .- 1096-9853. ; 36:10, s. 1280-1302
  • Tidskriftsartikel (refereegranskat)abstract
    • Realistic texture-based modelling methods, that is microstructural modelling and micromechanical modelling, are developed to simulate the rock aggregate breakage properties on the basis of the rock actual microstructure obtained using microscopic observations and image analysis. The breakage properties of three types of rocks, that is Avja, LEP and Vandle taken from three quarries in Sweden, in single aggregate breakage tests and in inter-aggregate breakage tests are then modelled using the proposed methods. The microstructural modelling directly integrates the microscopic observation, image analysis and numerical simulation together and provides a valuable tool to investigate the mechanical properties of rock aggregates on the basis of their microstructure properties. The micromechanical modelling takes the most important microstructure properties of rock aggregates into consideration and can model the major mechanical properties. Throughout this study, it is concluded that in general, the microstructure properties of rock aggregate work together to affect their mechanical properties, and it is difficult to correlate a single microstructure property with the mechanical properties of rock aggregates. In particular, for the three types of rock Avja, LEP and Vandle in this study, crack size distribution, grain size and grain perimeter (i.e. grain shape and spatial arrangement) show good correlations with the mechanical properties. The crack length and the grain size negatively affect the mechanical properties of Avja, LEP and Vandle, but the perimeter positively influences the mechanical properties. Besides, the modelled rock aggregate breakage properties in both single aggregate and inter-aggregate tests reveal that the aggregate microstructure, aggregate shape and loading conditions influence the breakage process of rock aggregate in service. For the rock aggregate with the same microstructure, the quadratic shape and good packing dramatically improve its mechanical properties. During services, the aggregate is easiest to be fragmented under point-to-point loading condition, and then in the sequence of multiple-point, point-to-plane and plane-to-plane loading conditions.
  •  
3.
  •  
4.
  • Liu, Hongyuan, et al. (författare)
  • Microscope rock texture characterization and simulation of rock aggregate properties
  • 2005
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • The literature review on the relationship between the textural properties and mechanical properties of rock aggregates indicates that most studies investigated the relationship in two separate processes, i.e. microscope observations and mechanical tests, and then correlate the mechanical properties with one of textural properties indirectly using various regression models.Samples of three granites with similar mineral content but varying mechanical properties are investigated by microscope texture quantification including image analysis followed by rock mechanics testing and rock aggregate testing in the laboratory. Computer simulation of rock mechanics properties, of strength of single aggregate particles and fracture of multiple particles in a cylindrical chamber (DSC test) is then made. Finally computer simulations are compared of with tumbling mill tests (LA test) through results from previous research.This study uses numerical modelling as a main tool to directly investigate the relationships, i.e. from the physical mechanisms' point of view and taking major textural properties into consideration. Two main modelling methods, i.e. microstructural modelling and micromechanical modelling are implemented. In the microstructural modelling, the numerical simulation model is built on the basis of rock microstructure. In the micromechanical modelling, the model is constructed on the basis of the Weibull theory.The modelled results from single particle tests of three granites, i.e. Ävja, LEP and Vändle under BTS, point-to-point, plane-to-plane, point-to-plane and multiple-point loading conditions using microstructural modelling and micromechanical modelling show that Ävja is weaker than LEP and Vändle in terms of the aggregate tensile strength and applied work. The microstructural modelling also reveals that LEP is weaker than Vändle but the micromechanical modelling indicates that LEP and Vändle have similar mechanical properties.From this work it is concluded that microscope texture quantification and computer simulation is a promising approach to analyse mechanical properties of rock aggregates. Numerical modelling of the DSC test shows the potential to simulate multi particle chamber compression tests for assessment of rock aggregate quality. In general, the texture properties work together to influence the mechanical properties of rock aggregates. Computer simulation using a heterogeneous material model provides a valuable tool to investigate the relationship between the textural properties and mechanical properties of rock aggregates by taking main textural properties into consideration. In particular, for the three rocks in this study, micro crack size distribution, grain perimeter and grain size show strong correlations with the mechanical properties, e.g. for DSC strength: cracks and grain size negatively affect the mechanical properties but the perimeter positively influences the mechanical properties.
  •  
5.
  • Alfsen, K. H., et al. (författare)
  • Electric field and plasma observations near the magnetopause and bow shock during a rapid compression.
  • 1984
  • Ingår i: Achievements of the International Magnetospheric Study (IMS). ; , s. 99-104
  • Tidskriftsartikel (refereegranskat)abstract
    • A fast compressional motion of the magnetopause resulting from the interaction of an interplanetary shock and the Earth's magnetosphere is discussed. The ISEE-1 and 2 satellites were in the frontside magnetosphere before the shock. A magnetosonic wave front, the magnetopause, and the bow shock passed them in a very short time. By a combination of electric and magnetic field data it is possible to determine the magnetosonic and the magnetopause velocity. -from STAR, 23(14), 1985
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Alfvén, Hannes, et al. (författare)
  • Voyager saturnian ring measurements and the early history of the solar-system
  • 1986
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 34:2, s. 145-154
  • Tidskriftsartikel (refereegranskat)abstract
    • The mass distribution in the Saturnian ring system is investigated and compared with predictions from the plasma cosmogony. According to this theory, the matter in the rings has once been in the form of a magnetized plasma, in which the gravitation is balanced partly by the centrifugal force and partly by the electromagnetic forces. As the plasma is neutralized, the electromagnetic forces disappear and the matter can be shown to fall in to of the original saturnocentric distance. This causes the so called “cosmogonic shadow effect”, which has been demonstrated earlier for the asteroidal belt and in the large scale structure of the Saturnian ring system.The relevance of the cosmogonic shadow effect is investigated for parts of the fine structures of the Saturnian ring system. It is shown that many structures of the present ring system can be understood as shadows and antishadows of cosmogonic origin. These appear in the form of double rings centered around a position a factor 0.64 (slightly less than) closer to Saturn than the causing feature. Voyager data agree with an accuracy better than 1%.
  •  
10.
  • Alm, L., et al. (författare)
  • Differing Properties of Two Ion-Scale Magnetopause Flux Ropes
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 123:1, s. 114-131
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we present results from the Magnetospheric Multiscale constellation encountering two ion-scale, magnetopause flux ropes. The two flux ropes exhibit very different properties and internal structure. In the first flux rope, there are large differences in the currents observed by different satellites, indicating variations occurring over sub-d(i) spatial scales, and time scales on the order of the ion gyroperiod. In addition, there is intense wave activity and particle energization. The interface between the two flux ropes exhibits oblique whistler wave activity. In contrast, the second flux rope is mostly quiescent, exhibiting little activity throughout the encounter. Changes in the magnetic topology and field line connectivity suggest that we are observing flux rope coalescence.
  •  
11.
  • Alm, L., et al. (författare)
  • EDR signatures observed by MMS in the 16 October event presented in a 2-D parametric space
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:3, s. 3262-3276
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a method for mapping the position of satellites relative to the X line using the measured B-L and B-N components of the magnetic field and apply it to the Magnetospheric multiscale (MMS) encounter with the electron diffusion region (EDR) which occurred on 13:07 UT on 16 October 2015. Mapping the data to our parametric space succeeds in capturing many of the signatures associated with magnetic reconnection and the electron diffusion region. This offers a method for determining where in the reconnection region the satellites were located. In addition, parametric mapping can also be used to present data from numerical simulations. This facilitates comparing data from simulations with data from in situ observations as one can avoid the complicated process using boundary motion analysis to determine the geometry of the reconnection region. In parametric space we can identify the EDR based on the collocation of several reconnection signatures, such as electron nongyrotropy, electron demagnetization, parallel electric fields, and energy dissipation. The EDR extends 2-3km in the normal direction and in excess of 20km in the tangential direction. It is clear that the EDR occurs on the magnetospheric side of the topological X line, which is expected in asymmetric reconnection. Furthermore, we can observe a north-south asymmetry, where the EDR occurs north of the peak in out-of-plane current, which may be due to the small but finite guide field.
  •  
12.
  • Alm, Love, et al. (författare)
  • Magnetotail Hall Physics in the Presence of Cold Ions
  • 2018
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing Ltd. - 0094-8276 .- 1944-8007. ; 45:20, s. 10,941-10,950
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first in situ observation of cold ionospheric ions modifying the Hall physics of magnetotail reconnection. While in the tail lobe, Magnetospheric Multiscale mission observed cold (tens of eV) E × B drifting ions. As Magnetospheric Multiscale mission crossed the separatrix of a reconnection exhaust, both cold lobe ions and hot (keV) ions were observed. During the closest approach of the neutral sheet, the cold ions accounted for ∼30% of the total ion density. Approximately 65% of the initial cold ions remained cold enough to stay magnetized. The Hall electric field was mainly supported by the j × B term of the generalized Ohm's law, with significant contributions from the ∇·P e and v c ×B terms. The results show that cold ions can play an important role in modifying the Hall physics of magnetic reconnection even well inside the plasma sheet. This indicates that modeling magnetic reconnection may benefit from including multiscale Hall physics.
  •  
13.
  • Alqeeq, S. W., et al. (författare)
  • Investigation of the homogeneity of energy conversion processes at dipolarization fronts from MMS measurements
  • 2022
  • Ingår i: Physics of Plasmas. - : American Institute of Physics (AIP). - 1070-664X .- 1089-7674. ; 29:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on six dipolarization fronts (DFs) embedded in fast earthward flows detected by the Magnetospheric Multiscale mission during a substorm event on 23 July 2017. We analyzed Ohm's law for each event and found that ions are mostly decoupled from the magnetic field by Hall fields. However, the electron pressure gradient term is also contributing to the ion decoupling and likely responsible for an electron decoupling at DF. We also analyzed the energy conversion process and found that the energy in the spacecraft frame is transferred from the electromagnetic field to the plasma (J & BULL; E > 0) ahead or at the DF, whereas it is the opposite (J & BULL; E < 0) behind the front. This reversal is mainly due to a local reversal of the cross-tail current indicating a substructure of the DF. In the fluid frame, we found that the energy is mostly transferred from the plasma to the electromagnetic field (J & BULL; E & PRIME; < 0) and should contribute to the deceleration of the fast flow. However, we show that the energy conversion process is not homogeneous at the electron scales due to electric field fluctuations likely related to lower-hybrid drift waves. Our results suggest that the role of DF in the global energy cycle of the magnetosphere still deserves more investigation. In particular, statistical studies on DF are required to be carried out with caution due to these electron scale substructures.
  •  
14.
  • Alqeeq, S. W., et al. (författare)
  • Two Classes of Equatorial Magnetotail Dipolarization Fronts Observed by Magnetospheric Multiscale Mission : A Statistical Overview
  • 2023
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 128:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We carried out a statistical study of equatorial dipolarization fronts (DFs) detected by the Magnetospheric Multiscale mission during the full 2017 Earth's magnetotail season. We found that two DF classes are distinguished: class I (74.4%) corresponds to the standard DF properties and energy dissipation and a new class II (25.6%). This new class includes the six DF discussed in Alqeeq et al. (2022, ) and corresponds to a bump of the magnetic field associated with a minimum in the ion and electron pressures and a reversal of the energy conversion process. The possible origin of this second class is discussed. Both DF classes show that the energy conversion process in the spacecraft frame is driven by the diamagnetic current dominated by the ion pressure gradient. In the fluid frame, it is driven by the electron pressure gradient. In addition, we have shown that the energy conversion processes are not homogeneous at the electron scale mostly due to the variations of the electric fields for both DF classes.
  •  
15.
  • Amano, T., et al. (författare)
  • Observational Evidence for Stochastic Shock Drift Acceleration of Electrons at the Earth's Bow Shock
  • 2020
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 124:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The first-order Fermi acceleration of electrons requires an injection of electrons into a mildly relativistic energy range. However, the mechanism of injection has remained a puzzle both in theory and observation. We present direct evidence for a novel stochastic shock drift acceleration theory for the injection obtained with Magnetospheric Multiscale observations at the Earth's bow shock. The theoretical model can explain electron acceleration to mildly relativistic energies at high-speed astrophysical shocks, which may provide a solution to the long-standing issue of electron injection.
  •  
16.
  • André, Mats, et al. (författare)
  • Magnetic reconnection and modification of the Hall physics due to cold ions at the magnetopause
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:13, s. 6705-6712
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations by the four Magnetospheric Multiscale spacecraft are used to investigate the Hall physics of a magnetopause magnetic reconnection separatrix layer. Inside this layer of currents and strong normal electric fields, cold (eV) ions of ionospheric origin can remain frozen-in together with the electrons. The cold ions reduce the Hall current. Using a generalized Ohm's law, the electric field is balanced by the sum of the terms corresponding to the Hall current, the vxB drifting cold ions, and the divergence of the electron pressure tensor. A mixture of hot and cold ions is common at the subsolar magnetopause. A mixture of length scales caused by a mixture of ion temperatures has significant effects on the Hall physics of magnetic reconnection.
  •  
17.
  • Andre, M., et al. (författare)
  • Multi-spacecraft observations of broadband waves near the lower hybrid frequency at the Earthward edge of the magnetopause
  • 2001
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 19:12-okt, s. 1471-1481
  • Tidskriftsartikel (refereegranskat)abstract
    • Broadband waves around the lower hybrid frequency (around 10 Hz) near the magnetopause are studied, using the four Cluster satellites. These waves are common at the Earthward edge of the boundary layer, consistent with earlier observations, and can have amplitudes at least up to 5 mV/m. These waves are similar on all four Cluster satellites, i.e. they are likely to be distributed over large areas of the boundary. The strongest electric fields occur during a few seconds, i.e. over distances of a few hundred km in the frame of the moving magnetopause, a scale length comparable to the ion gyroradius. The strongest magnetic oscillations in the same frequency range are typically found in the boundary layer, and across the magnetopause. During an event studied in detail, the magnetopause velocity is consistent with a large-scale depression wave, i.e. an inward bulge of magnetosheath plasma, moving tailward along the nominal magnetopause boundary. Preliminary investigations indicate that a rather flat front side of the large-scale wave is associated with a rather static small-scale electric field, while a more turbulent backside of the large-scale wave is associated with small-scale time varying electric field wave packets.
  •  
18.
  • Andriopoulou, Maria, et al. (författare)
  • Plasma Density Estimates From Spacecraft Potential Using MMS Observations in the Dayside Magnetosphere
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 123:4, s. 2620-2629
  • Tidskriftsartikel (refereegranskat)abstract
    • Using spacecraft potential observations with and without active spacecraft potential control (on/off) from the Magnetospheric Multiscale (MMS) mission, we estimate the average photoelectron emission as well as derive the plasma density information from spacecraft potential variations and active spacecraft potential control ion current. Such estimates are of particular importance especially during periods when the plasma instruments are not in operation and also when electron density observations with higher time resolution than the ones available from particle detectors are necessary. We compare the average photoelectron emission of different spacecraft and discuss their differences. We examine several time intervals when we performed our density estimations in order to understand the strengths and weaknesses of our data set. We finally compare our derived density estimates with the plasma density observations provided by plasma detectors onboard MMS, whenever available, and discuss the overall results. The estimated electron densities should only be used as a proxy of the electron density, complimentary to the plasma moments derived by plasma detectors, especially when the latter are turned off or when higher time resolution observations are required. While the derived data set can often provide valuable information about the plasma environment, the actual values may often be very far from the actual plasma density values and should therefore be used with caution.
  •  
19.
  • Andriopoulou, M., et al. (författare)
  • Study of the spacecraft potential under active control and plasma density estimates during the MMS commissioning phase
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:10, s. 4858-4864
  • Tidskriftsartikel (refereegranskat)abstract
    • Each spacecraft of the recently launched magnetospheric multiscale MMS mission is equipped with Active Spacecraft Potential Control (ASPOC) instruments, which control the spacecraft potential in order to reduce spacecraft charging effects. ASPOC typically reduces the spacecraft potential to a few volts. On several occasions during the commissioning phase of the mission, the ASPOC instruments were operating only on one spacecraft at a time. Taking advantage of such intervals, we derive photoelectron curves and also perform reconstructions of the uncontrolled spacecraft potential for the spacecraft with active control and estimate the electron plasma density during those periods. We also establish the criteria under which our methods can be applied.
  •  
20.
  • Argall, M. R., et al. (författare)
  • Electron Dynamics Within the Electron Diffusion Region of Asymmetric Reconnection
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 123:1, s. 146-162
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the agyrotropic nature of electron distribution functions and their substructure to illuminate electron dynamics in a previously reported electron diffusion region (EDR) event. In particular, agyrotropy is examined as a function of energy to reveal detailed finite Larmor radius effects for the first time. It is shown that the previously reported approximate to 66eV agyrotropic "crescent" population that has been accelerated as a result of reconnection is evanescent in nature because it mixes with a denser, gyrotopic background. Meanwhile, accelerated agyrotropic populations at 250 and 500eV are more prominent because the background plasma at those energies is more tenuous. Agyrotropy at 250 and 500eV is also more persistent than at 66eV because of finite Larmor radius effects; agyrotropy is observed 2.5 ion inertial lengths from the EDR at 500eV, but only in close proximity to the EDR at 66eV. We also observe linearly polarized electrostatic waves leading up to and within the EDR. They have wave normal angles near 90 degrees, and their occurrence and intensity correlate with agyrotropy. Within the EDR, they modulate the flux of 500eV electrons travelling along the current layer. The net electric field intensifies the reconnection current, resulting in a flow of energy from the fields into the plasma. Plain Language Summary The process of reconnection involves an explosive transfer of magnetic energy into particle energy. When energetic particles contact modern technology such as satellites, cell phones, or other electronic devices, they can cause random errors and failures. Exactly how particles are energized via reconnection, however, is still unknown. Fortunately, the Magnetospheric Multiscale mission is finally able to detect and analyze reconnection processes. One recent finding is that energized particles take on a crescent-shaped configuration in the vicinity of reconnection and that this crescent shape is related to the energy conversion process. In our paper, we explain why the crescent shape has not been observed until now and inspect particle motions to determine what impact it has on energy conversion. When reconnection heats the plasma, the crescent shape forms from the cool, tenuous particles. As plasmas from different regions mix, dense, nonheated plasma obscures the crescent shape in our observations. The highest-energy particle population created by reconnection, though, also contains features of the crescent shape that are more persistent but appear less dramatically in the data.
  •  
21.
  • Artemyev, A. V., et al. (författare)
  • Field-Aligned Currents Originating From the Magnetic Reconnection Region : Conjugate MMS-ARTEMIS Observations
  • 2018
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 45:12, s. 5836-5844
  • Tidskriftsartikel (refereegranskat)abstract
    • Near-Earth magnetic reconnection reconfigures the magnetotail and produces strong plasma flows that transport plasma sheet particles and electromagnetic energy to the inner magnetosphere. An essential element of such a reconfiguration is strong, transient field-aligned currents. These currents, believed to be generated within the plasma sheet and closed at the ionosphere, are responsible for magnetosphere-ionosphere coupling during substorms. We use conjugate measurements from Magnetospheric Multiscale (MMS) at the plasma sheet boundary (around x approximate to- 10R(E)) and Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) at the equator (around x approximate to- 60R(E)) to explore the potential generation region of these currents. We find a clear correlation between the field-aligned current intensity measured by MMS and the tailward plasma sheet flows measured by ARTEMIS. To better understand the origin of this correlation, we compare spacecraft observations with results from 3-D particle-in-cell simulations of magnetotail reconnection. The comparison reveals that field-aligned currents and plasma flows start, wax, and wane due to the development of a reconnection region between MMS (near-Earth) and ARTEMIS (at lunar distance). A weak correlation between the field-aligned current intensity at MMS and earthward flow magnitudes at ARTEMIS suggests that distant magnetotail reconnection does not significantly contribute to the generation of the observed near-Earth currents. Our findings support the idea that the dominant role of the near-Earth magnetotail reconnection in the field-aligned current generation is likely responsible for their transient nature, whereas more steady distant tail reconnection would support long-term field-aligned current system. Plain Language Summary Field-aligned currents connect the Earth magnetotail and ionosphere, proving energy and information transport from the region where main energy release process, magnetic reconnection, occurs to the region where the collisional energy dissipation takes place. Therefore, investigation and modeling of the field-aligned current generation is important problem of the magnetosphere plasma physics. However, field-aligned current investigation requires simultaneous observations of reconnection signatures in the magnetotail and at high latitudes. Simultaneous and conjugate operation of two multispacecraft missions, Magnetospheric Multiscale and Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun, for the first time provide an opportunity for such investigation. Combining spacecraft observations with results from 3-D particle-in-cell simulations of magnetotail reconnection, we demonstrate that field-aligned currents and plasma flows start, wax, and wane due to the development of a reconnection region between near-Earth (Magnetospheric Multiscale location) and lunar distant tail (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun location). Our findings support the idea that the dominant role of the near-Earth magnetotail reconnection in the field-aligned current generation is likely responsible for their transient nature, whereas more steady distant tail reconnection would support long-term field-aligned current system.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  • Blomberg, Lars, et al. (författare)
  • Atrid-2 : An advanced auroral microprobe
  • 1999
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Astri-2 is an advanced auroral microprobe with dual primary mission objectives; to do high-quality in situ measurements of the physical processes behind the aurora, and to demonstrate the usefulness of microspacecraft as advanced research tools. Mission success will open up entirely new possibilities to carry out low-budget multipoint measurements in near-Earth space. This long-desired kind of in situ measurements are the next major step forward in experimental space physics. Astrid-2 has platform dimensions of 45×45×30 cm, a total mass of just below 30 kg, and carries scientific instruments for measuring local electric and magnetic fields, plasma density and density fluctuations, ions and electrons, as well as photometers for remote imaging of auroral emissions. Attitude determination is provided by a high-precision star imager. Some 250 Mbytes' worth of scientific data will be received each day at the two ground stations. Astrid-2 will be launched as a piggy-back on a Russian Kosmos-3M launcher into an 83 deg inclination circular orbit at 1000 km altitude. Nodal regression will give complete coverage of all local time sectors every 3.5 months. © 1999 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 370
Typ av publikation
tidskriftsartikel (302)
rapport (36)
konferensbidrag (22)
forskningsöversikt (5)
annan publikation (2)
doktorsavhandling (2)
visa fler...
konstnärligt arbete (1)
visa färre...
Typ av innehåll
refereegranskat (318)
övrigt vetenskapligt/konstnärligt (48)
populärvet., debatt m.m. (3)
Författare/redaktör
Lindqvist, Per-Arne (334)
Ergun, R. E. (128)
Russell, C. T. (117)
Torbert, R. B. (110)
Burch, J. L. (107)
Khotyaintsev, Yuri V ... (99)
visa fler...
Giles, B. L. (98)
Strangeway, R. J. (79)
Gershman, D. J. (67)
Marklund, Göran (54)
Lavraud, B. (53)
Le Contel, O. (51)
Khotyaintsev, Yu. V. (42)
Magnes, W. (40)
Nakamura, R. (39)
Graham, Daniel B. (39)
Vaivads, Andris (38)
Wilder, F. D. (37)
Pollock, C. J. (37)
Lindqvist, Per-Arne, ... (35)
Dorelli, J. C. (35)
Phan, T. D. (35)
Saito, Y. (32)
Argall, M. R. (30)
André, Mats (29)
Paterson, W. R. (29)
Marklund, Göran T. (28)
Goodrich, K. A. (27)
Plaschke, F. (26)
Fuselier, S. A. (26)
Eastwood, J. P. (24)
Karlsson, Tomas (23)
Avanov, L. A. (23)
Ahmadi, N. (22)
Moore, T. E. (22)
Pedersen, A. (21)
Stawarz, J. E. (21)
Blomberg, Lars (20)
Khotyaintsev, Yuri (20)
Giles, B. (20)
Kou, S.Q. (20)
Chen, L. -J (19)
Mozer, F. S. (18)
Russell, Christopher ... (18)
Ergun, Robert E. (18)
Schwartz, S. J. (18)
Pollock, C. (17)
Retino, A. (16)
Hesse, M (16)
Shay, M. A. (16)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (290)
Uppsala universitet (134)
Luleå tekniska universitet (77)
Umeå universitet (3)
RISE (1)
Karolinska Institutet (1)
Språk
Engelska (352)
Svenska (16)
Ryska (1)
Kinesiska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (287)
Teknik (81)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy