SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lindroos Y.) "

Search: WFRF:(Lindroos Y.)

  • Result 1-25 of 25
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Addazi, A., et al. (author)
  • New high-sensitivity searches for neutrons converting into antineutrons and/or sterile neutrons at the HIBEAM/NNBAR experiment at the European Spallation Source
  • 2021
  • In: Journal of Physics G. - : Institute of Physics Publishing (IOPP). - 0954-3899 .- 1361-6471. ; 48:7
  • Journal article (peer-reviewed)abstract
    • The violation of baryon number, , is an essential ingredient for the preferential creation of matter over antimatter needed to account for the observed baryon asymmetry in the Universe. However, such a process has yet to be experimentally observed. The HIBEAM/NNBAR program is a proposed two-stage experiment at the European Spallation Source to search for baryon number violation. The program will include high-sensitivity searches for processes that violate baryon number by one or two units: free neutron–antineutron oscillation () via mixing, neutron–antineutron oscillation via regeneration from a sterile neutron state (), and neutron disappearance (n → n'); the effective process of neutron regeneration () is also possible. The program can be used to discover and characterize mixing in the neutron, antineutron and sterile neutron sectors. The experiment addresses topical open questions such as the origins of baryogenesis and the nature of dark matter, and is sensitive to scales of new physics substantially in excess of those available at colliders. A goal of the program is to open a discovery window to neutron conversion probabilities (sensitivities) by up to three orders of magnitude compared with previous searches. The opportunity to make such a leap in sensitivity tests should not be squandered. The experiment pulls together a diverse international team of physicists from the particle (collider and low energy) and nuclear physics communities, while also including specialists in neutronics and magnetics.
  •  
2.
  • Abele, H., et al. (author)
  • Particle physics at the European Spallation Source
  • 2023
  • In: Physics reports. - : Elsevier. - 0370-1573 .- 1873-6270. ; 1023, s. 1-84
  • Research review (peer-reviewed)abstract
    • Presently under construction in Lund, Sweden, the European Spallation Source (ESS) will be the world’s brightest neutron source. As such, it has the potential for a particle physics program with a unique reach and which is complementary to that available at other facilities. This paper describes proposed particle physics activities for the ESS. These encompass the exploitation of both the neutrons and neutrinos produced at the ESS for high precision (sensitivity) measurements (searches).
  •  
3.
  • Du, K., et al. (author)
  • Cell-type–specific inhibition of the dendritic plateau potential in striatal spiny projection neurons
  • 2017
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 114:36, s. E7612-E7621
  • Journal article (peer-reviewed)abstract
    • Striatal spiny projection neurons (SPNs) receive convergent excitatory synaptic inputs from the cortex and thalamus. Activation of spatially clustered and temporally synchronized excitatory inputs at the distal dendrites could trigger plateau potentials in SPNs. Such supralinear synaptic integration is crucial for dendritic computation. However, how plateau potentials interact with subsequent excitatory and inhibitory synaptic inputs remains unknown. By combining computational simulation, two-photon imaging, optogenetics, and dual-color uncaging of glutamate and GABA, we demonstrate that plateau potentials can broaden the spatiotemporal window for integrating excitatory inputs and promote spiking. The temporal window of spiking can be delicately controlled by GABAergic inhibition in a cell-type–specific manner. This subtle inhibitory control of plateau potential depends on the location and kinetics of the GABAergic inputs and is achieved by the balance between relief and reestablishment of NMDA receptor Mg2+ block. These findings represent a mechanism for controlling spatiotemporal synaptic integration in SPNs.
  •  
4.
  • Santoro, V., et al. (author)
  • HighNESS conceptual design report: Volume I
  • 2024
  • In: Journal of Neutron Research. - 1023-8166 .- 1477-2655. ; 25:3-4, s. 85-314
  • Journal article (peer-reviewed)abstract
    • The European Spallation Source, currently under construction in Lund, Sweden, is a multidisciplinary international laboratory. Once completed to full specifications, it will operate the world’s most powerful pulsed neutron source. Supported by a 3 million Euro Research and Innovation Action within the EU Horizon 2020 program, a design study (HighNESS) has been completed to develop a second neutron source located below the spallation target. Compared to the first source, designed for high cold and thermal brightness, the new source has been optimized to deliver higher intensity, and a shift to longer wavelengths in the spectral regions of cold (CN, 2–20 Å), very cold (VCN, 10–120 Å), and ultracold (UCN, >500 Å) neutrons. The second source comprises a large liquid deuterium moderator designed to produce CN and support secondary VCN and UCN sources. Various options have been explored in the proposed designs, aiming for world-leading performance in neutronics. These designs will enable the development of several new instrument concepts and facilitate the implementation of a high-sensitivity neutron-antineutron oscillation experiment (NNBAR). This document serves as the Conceptual Design Report for the HighNESS project, representing its final deliverable.
  •  
5.
  • Santoro, V., et al. (author)
  • HighNESS conceptual design report: Volume II. the NNBAR experiment.
  • 2024
  • In: Journal of Neutron Research. - 1023-8166 .- 1477-2655. ; 25:3-4, s. 315-406
  • Journal article (peer-reviewed)abstract
    • A key aim of the HighNESS project for the European Spallation Source is to enable cutting-edge particle physics experiments. This volume presents a conceptual design report for the NNBAR experiment. NNBAR would exploit a new cold lower moderator to make the first search in over thirty years for free neutrons converting to anti-neutrons. The observation of such a baryon-number-violating signature would be of fundamental significance and tackle open questions in modern physics, including the origin of the matter-antimatter asymmetry. This report shows the design of the beamline, supermirror focusing system, magnetic and radiation shielding, and anti-neutron detector necessary for the experiment. A range of simulation programs are employed to quantify the performance of the experiment and show how background can be suppressed. For a search with full background suppression, a sensitivity improvement of three orders of magnitude is expected, as compared with the previous search. Civil engineering studies for the NNBAR beamline are also shown, as is a costing model for the experiment.
  •  
6.
  • Aguilar, J., et al. (author)
  • Search for Leptonic CP Violation with the ESSnuSBplus Project
  • 2024
  • In: Letters in High Energy Physics. - : Andromeda Publishing And Academic Services LTD. - 2632-2714.
  • Journal article (peer-reviewed)abstract
    • ESSνSB is a design study for a next-generation long-baseline neutrino experiment that aims at the precise measurement of the CP-violating phase, δCP, in the leptonic sector at the second oscillation maximum. The conceptual design report published from the first phase of the project showed that after 10 years of data taking, more than 70% of the possible δCP range will be covered with 5σ C.L. to reject the no-CP-violation hypothesis. The expected value of δCP precision is smaller than 8◦ for all δCP values. The next phase of the project, the ESSνSB+, aims at using the intense muon flux produced together with neutrinos to measure the neutrino-nucleus cross-section, the dominant term of the systematic uncertainty, in the energy range of 0.2–0.6 GeV, using a Low Energy neutrinos from STORed Muons (LEnuSTORM) and a Low Energy Monitored Neutrino Beam (LEMNB) facilities.
  •  
7.
  • Aguilar, J., et al. (author)
  • Study of nonstandard interactions mediated by a scalar field at the ESSnuSB experiment
  • 2024
  • In: Physical Review D. - : American Physical Society. - 2470-0010 .- 2470-0029. ; 109:11
  • Journal article (peer-reviewed)abstract
    • In this paper, we study scalar mediator induced nonstandard interactions (SNSIs) in the context of the ESSnuSB experiment. In particular, we study the capability of ESSnuSB to put bounds on the SNSI parameters and also study the impact of SNSIs in the measurement of the leptonic CP phase δCP. Existence of SNSIs modifies the neutrino mass matrix and this modification can be expressed in terms of three diagonal real parameters (ηee, ημμ, and ηττ) and three off-diagonal complex parameters (ηeμ, ηeτ, and ημτ). Our study shows that the upper bounds on the parameters ημμ and ηττ depend upon how Δm312 is minimized in the theory. However, this is not the case when one tries to measure the impact of SNSIs on δCP. Further, we show that the CP sensitivity of ESSnuSB can be completely lost for certain values of ηee and ημτ for which the appearance channel probability becomes independent of δCP.
  •  
8.
  • Backlund, Y., et al. (author)
  • Micromachining of Silicon for Thermal and Position-Sensitive Nuclear-Detector Applications
  • 1989
  • In: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002. ; 279:3, s. 555-559
  • Journal article (peer-reviewed)abstract
    • As part of a programme aiming at the development of small nuclear radiation detectors, for example thermal detectors and position sensitive mosaic structures of surface barrier type, a technique for micromachining the detector bodies in silicon has been developed. The technique is based on an anisotropic etching property of a solution, mainly consisting of KOH. The etch rate is strongly orientation dependent with a speed in the 〈100〉 direction about 400 times faster than in the 〈111〉 direction. The major steps in the etching procedure are described and some examples of deep etching in Si are shown.
  •  
9.
  •  
10.
  • Baussan, E., et al. (author)
  • A very intense neutrino super beam experiment for leptonic CP violation discovery based on the European spallation source linac
  • 2014
  • In: Nuclear Physics B. - : Elsevier BV. - 0550-3213 .- 1873-1562. ; 885, s. 127-149
  • Journal article (peer-reviewed)abstract
    • Very intense neutrino beams and large neutrino detectors will be needed in order to enable the discovery of CP violation in the leptonic sector. We propose to use the proton linac of the European Spoliation Source currently under construction in Lund, Sweden, to deliver, in parallel with the spoliation neutron production, a very intense, cost effective and high performance neutrino beam. The baseline program for the European Spoliation Source linac is that it will be fully operational at 5 MW average power by 2022, producing 2 GeV 2.86 ms long proton pulses at a rate of 14 Hz. Our proposal is to upgrade the linac to 10 MW average power and 28 Hz, producing 14 pulses/s for neutron production and 14 pulses/s for neutrino production. Furthermore, because of the high current required in the pulsed neutrino horn, the length of the pulses used for neutrino production needs to be compressed to a few mu s with the aid of an accumulator ring. A long baseline experiment using this Super Beam and a megaton underground Water Cherenkov detector located in existing mines 300-600 km from Lund will make it possible to discover leptonic CP violation at 5 sigma significance level in up to 50% of the leptonic Dirac CP-violating phase range. This experiment could also determine the neutrino mass hierarchy at a significance level of more than 3 sigma if this issue will not already have been settled by other experiments by then. The mass hierarchy performance could be increased by combining the neutrino beam results with those obtained from atmospheric neutrinos detected by the same large volume detector. This detector will also be used to measure the proton lifetime, detect cosmological neutrinos and neutrinos from supernova explosions. Results on the sensitivity to leptonic CP violation and the neutrino mass hierarchy are presented.
  •  
11.
  • Hoff, P, et al. (author)
  • Nuclear spectroscopy at Sn-133
  • 2000
  • In: HYPERFINE INTERACTIONS. - : BALTZER SCI PUBL BV. - 0304-3843. ; 129:1-4, s. 141-148
  • Journal article (other academic/artistic)abstract
    • It is described how the measurement of n gamma -coincidences can be used to identify single-particle states in Sn-133. This method, in combination with the improved yields at ISOLDE, has facilitated firm determination of three excited single-particle stat
  •  
12.
  • Hoff, P, et al. (author)
  • Single-neutron states in Sn-133
  • 1996
  • In: PHYSICAL REVIEW LETTERS. - : AMER INST PHYSICS. - 0031-9007. ; 77:6, s. 1020-1023
  • Journal article (peer-reviewed)abstract
    • The location of several single-neutron states in Sn-133 has been identified. The P-3/2, h(9/2), and f(5/2) states were found at 853.7, 1560.9, and 2004.6 keV, respectively, by measuring gamma rays in coincidence with delayed neutrons following the decay o
  •  
13.
  •  
14.
  •  
15.
  • Lindroos, M., et al. (author)
  • ESS progressing into construction
  • 2016
  • In: IPAC 2016 - Proceedings of the 7th International Particle Accelerator Conference. - 9783954501472 ; , s. 4266-4270
  • Conference paper (peer-reviewed)abstract
    • The construction of the European Spallation Source, ESS, started in summer 2014. At the site in Lund, the accelerator tunnel will be completed at the time of IPAC16, while prototyping and manufacturing or preparations for manpower contributions are going on in more 23 laboratories distributed over the 12 European countries collaborating on the accelerator project. Major technical milestones have been reached include the testing of superconducting cavity prototypes of two families to values above design gradients, the first ESS modulator has been tested to 90 kV and the first klystron prototype has been received in April 2016. Equally important developments are taking place at many partner laboratories. The presentation will summarize the status of the ESS accelerator project by the time of IPAC16.
  •  
16.
  • Strom, L, et al. (author)
  • Postreplicative formation of cohesion is required for repair and induced by a single DNA break
  • 2007
  • In: Science (New York, N.Y.). - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 317:5835, s. 242-245
  • Journal article (peer-reviewed)abstract
    • Sister-chromatid cohesion, established during replication by the protein complex cohesin, is essential for both chromosome segregation and double-strand break (DSB) repair. Normally, cohesion formation is strictly limited to the S phase of the cell cycle, but DSBs can trigger cohesion also after DNA replication has been completed. The function of this damage-induced cohesion remains unknown. In this investigation, we show that damage-induced cohesion is essential for repair in postreplicative cells in yeast. Furthermore, it is established genome-wide after induction of a single DSB, and it is controlled by the DNA damage response and cohesin-regulating factors. We thus define a cohesion establishment pathway that is independent of DNA duplication and acts together with cohesion formed during replication in sister chromatid–based DSB repair.
  •  
17.
  •  
18.
  •  
19.
  • Vagstrand, K., et al. (author)
  • Eating habits in relation to body fatness and gender in adolescents--results from the 'SWEDES' study
  • 2007
  • In: Eur J Clin Nutr. - : Springer Science and Business Media LLC. - 0954-3007 .- 1476-5640. ; 61:4, s. 517-25
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE: To investigate if eating habits among adolescents are related to body fatness and gender. DESIGN: Cross-sectional study. SETTING: Obesity Unit, Huddinge University Hospital, Sweden, 2001-2002. SUBJECTS: Two hundred and seventy-five girls and 199 boys, aged 16-17 years. METHOD: Questionnaires were used for dietary intake and meal frequency, BodPod for measuring body fatness (BF%). In all, 169 girls and 128 boys were classified as adequate reporters (AR) of energy intake, and were used in the dietary analyses. The whole sample was used in the meal frequency analyses. RESULTS: The correlation between reported energy intake and weight in the AR group was 0.23 (P<0.01) for girls and 0.36 for boys (P<0.001). The correlations were inverse or not significant in the whole sample. The following variables correlated significantly with a high BF% (r (s)=+/-0.2): a low intake of milk in both girls and boys, a high intake of fibre and alcohol and a low intake of sugar in girls and a low intake of breakfast cereals in boys. Those with regular breakfast habits had healthier food choices than others, but this was not related to BF%. Boys had more meals per day (4.9 vs 4.6, P=0.02), especially early in the morning and late at night, whereas girls reported a higher relative intake of light meals and fruit and a lower intake of milk than boys. CONCLUSIONS: A few associations between eating habits and body fatness were found, but without any obvious patterns. The true differences in eating habits between lean and overweight adolescents are probably very small.
  •  
20.
  •  
21.
  • Villa, Luisa L., et al. (author)
  • Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions
  • 2007
  • In: New England Journal of Medicine. - 0028-4793 .- 1533-4406. ; 356:19, s. 1915-1927
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Human papillomavirus types 16 (HPV-16) and 18 (HPV-18) cause approximately 70% of cervical cancers worldwide. A phase 3 trial was conducted to evaluate a quadrivalent vaccine against HPV types 6, 11, 16, and 18 (HPV-6/11/16/18) for the prevention of high-grade cervical lesions associated with HPV-16 and HPV-18. METHODS: In this randomized, double-blind trial, we assigned 12,167 women between the ages of 15 and 26 years to receive three doses of either HPV-6/11/16/18 vaccine or placebo, administered at day 1, month 2, and month 6. The primary analysis was performed for a per-protocol susceptible population that included 5305 women in the vaccine group and 5260 in the placebo group who had no virologic evidence of infection with HPV-16 or HPV-18 through 1 month after the third dose (month 7). The primary composite end point was cervical intraepithelial neoplasia grade 2 or 3, adenocarcinoma in situ, or cervical cancer related to HPV-16 or HPV-18. RESULTS: Subjects were followed for an average of 3 years after receiving the first dose of vaccine or placebo. Vaccine efficacy for the prevention of the primary composite end point was 98% (95.89% confidence interval [CI], 86 to 100) in the per-protocol susceptible population and 44% (95% CI, 26 to 58) in an intention-to-treat population of all women who had undergone randomization (those with or without previous infection). The estimated vaccine efficacy against all high-grade cervical lesions, regardless of causal HPV type, in this intention-to-treat population was 17% (95% CI, 1 to 31). CONCLUSIONS: In young women who had not been previously infected with HPV-16 or HPV-18, those in the vaccine group had a significantly lower occurrence of high-grade cervical intraepithelial neoplasia related to HPV-16 or HPV-18 than did those in the placebo group.
  •  
22.
  • Wildner, E., et al. (author)
  • The Opportunity Offered by the ESSnuSB Project to Exploit the Larger Leptonic CP Violation Signal at the Second Oscillation Maximum and the Requirements of This Project on the ESS Accelerator Complex
  • 2016
  • In: Advances in High Energy Physics. - : Hindawi Publishing Corporation. - 1687-7357 .- 1687-7365.
  • Journal article (peer-reviewed)abstract
    • The European Spallation Source (ESS), currently under construction in Lund, Sweden, is a research center that will provide, by 2023, the world's most powerful neutron source. The average power of the proton linac will be 5 MW. Pulsing this linac at higher frequency will make it possible to raise the average total beam power to 10 MW to produce, in parallel with the spallation neutron production, a very intense neutrino Super Beam of about 0.4 GeV mean neutrino energy. This will allow searching for leptonic CP violation at the second oscillation maximum where the sensitivity is about 3 times higher than at the first. The ESS neutrino Super Beam, ESSnuSB operated with a 2.0 GeV linac proton beam, together with a large undergroundWater Cherenkov detector located at 540 km from Lund, will make it possible to discover leptonic CP violation at 5 sigma. significance level in 56% (65% for an upgrade to 2.5 GeV beam energy) of the leptonic CP-violating phase range after 10 years of data taking, assuming a 5% systematic error in the neutrino flux and 10% in the neutrino cross section. The paper presents the outstanding physics reach possible for CP violation with ESSnuSB obtainable under these assumptions for the systematic errors. It also describes the upgrade of the ESS accelerator complex required for ESSnuSB.
  •  
23.
  •  
24.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view