SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Linke Dirk) "

Sökning: WFRF:(Linke Dirk)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Chowdhury, Sounak, et al. (författare)
  • Streptococcus pyogenes Forms Serotype- and Local Environment-Dependent Interspecies Protein Complexes
  • 2021
  • Ingår i: mSystems. - 2379-5077. ; 6:5, s. 1-19
  • Tidskriftsartikel (refereegranskat)abstract
    • Streptococcus pyogenes is known to cause both mucosal and systemic infections in humans. In this study, we used a combination of quantitative and structural mass spectrometry techniques to determine the composition and structure of the interaction network formed between human plasma proteins and the surfaces of different S. pyogenes serotypes. Quantitative network analysis revealed that S. pyogenes forms serotype-specific interaction networks that are highly dependent on the domain arrangement of the surface-attached M protein. Subsequent structural mass spectrometry analysis and computational modeling of one of the M proteins, M28, revealed that the network structure changes across different host microenvironments. We report that M28 binds secretory IgA via two separate binding sites with high affinity in saliva. During vascular leakage mimicked by increasing plasma concentrations in saliva, the binding of secretory IgA was replaced by the binding of monomeric IgA and C4b-binding protein (C4BP). This indicates that an upsurge of C4BP in the local microenvironment due to damage to the mucosal membrane drives the binding of C4BP and monomeric IgA to M28. These results suggest that S. pyogenes has evolved to form microenvironment-dependent host-pathogen protein complexes to combat human immune surveillance during both mucosal and systemic infections. IMPORTANCE Streptococcus pyogenes (group A Streptococcus [GAS]), is a human-specific Gram-positive bacterium. Each year, the bacterium affects 700 million people globally, leading to 160,000 deaths. The clinical manifestations of S. pyogenes are diverse, ranging from mild and common infections like tonsillitis and impetigo to life-threatening systemic conditions such as sepsis and necrotizing fasciitis. S. pyogenes expresses multiple virulence factors on its surface to localize and initiate infections in humans. Among all these expressed virulence factors, the M protein is the most important antigen. In this study, we perform an in-depth characterization of the human protein interactions formed around one of the foremost human pathogens. This strategy allowed us to decipher the protein interaction networks around different S. pyogenes strains on a global scale and to compare and visualize how such interactions are mediated by M proteins.
  •  
3.
  • Eisenberg, Tobias, et al. (författare)
  • Cardioprotection and lifespan extension by the natural polyamine spermidine
  • 2016
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 22:12, s. 1428-1438
  • Tidskriftsartikel (refereegranskat)abstract
    • Aging is associated with an increased risk of cardiovascular disease and death. Here we show that oral supplementation of the natural polyamine spermidine extends the lifespan of mice and exerts cardioprotective effects, reducing cardiac hypertrophy and preserving diastolic function in old mice. Spermidine feeding enhanced cardiac autophagy, mitophagy and mitochondrial respiration, and it also improved the mechano-elastical properties of cardiomyocytes in vivo, coinciding with increased titin phosphorylation and suppressed subclinical inflammation. Spermidine feeding failed to provide cardioprotection in mice that lack the autophagy-related protein Atg5 in cardiomyocytes. In Dahl salt-sensitive rats that were fed a high-salt diet, a model for hypertension-induced congestive heart failure, spermidine feeding reduced systemic blood pressure, increased titin phosphorylation and prevented cardiac hypertrophy and a decline in diastolic function, thus delaying the progression to heart failure. In humans, high levels of dietary spermidine, as assessed from food questionnaires, correlated with reduced blood pressure and a lower incidence of cardiovascular disease. Our results suggest a new and feasible strategy for protection against cardiovascular disease.
  •  
4.
  • Gurung, Jyoti Mohan, 1984- (författare)
  • Coordinating type III secretion system biogenesis in Yersinia pseudotuberculosis
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Various Gram-negative bacteria utilize type III secretion system (T3SS) to deliver effectors into eukaryotic host cells and establish mutualistic or pathogenic interactions. An example is the Ysc-Yop T3SS of pathogenic Yersinia species. The T3SS resembles a molecular syringe with a wide cylindrical membrane-spanning basal body that scaffolds a hollow extracellular needle with a pore-forming translocon complex crowned at the needle tip. Together they form a continuous conduit between bacteria and host cells that allow delivery of effector proteins. Dedicated actions of cytoplasmic chaperones, regulators and components of the cytoplasmic complex orchestrates hierarchical assembly of T3SS. On the basis of secretion hierarchy, proteins can be categorized as ‘early’ needle complex proteins, ‘middle’ translocators and ‘late’ Yop effectors. However, how the system recognizes, prepares and mediates temporal delivery of T3S substrates is not fully understood. Herein, we have investigated the roles of YscX and YscY (present specifically in the Ysc family of T3SS), as well as YopN-TyeA (broadly distributed among T3SS families) to provide a better understanding of some of the molecular mechanisms governing spatiotemporal control of T3SS assembly.Despite reciprocal YscX-YscY binary and YscX-YscY-SctV ternary interactions between the member proteins, functional interchangeability in Yersinia was not successful. This revealed YscX and YscY must perform functions unique to Yersinia T3SS. Defined domain swapping and site-directed mutagenesis identified two highly conserved cysteine residues important for YscX function. Moreover, the N-terminal region of YscX harboured an independent T3S signal. Manipulating the YscX N-terminus by exchanging it with equivalent secretion signals from different T3S substrates abrogated T3S activity. This was explained by the need for the YscX N-terminus to correctly localize and/or assemble the ‘early’ SctI inner adapter and SctF needle protein. Therefore, N-terminal YscX performs dual functions; one as a secretion signal and the other as a structural signal to control early stage assembly of T3SS.In Ysc-Yop T3SS, YopN-TyeA complex is involved in the later stage of T3SS assembly, inhibiting Yops secretion until host cell contact is achieved. Analysis of the YopN C-terminus identified a specific domain stretching 279-287 critical for regulating Ysc-Yop T3SS activity. The regulation was mediated by specific hydrophobic contacts between W279 of YopN and F8 of TyeA.In conclusion, this work has provided novel molecular mechanisms regarding  the spatiotemporal assembly of T3SS. While the N-terminal region of YscX contributes to the early stage of T3SS assembly, the C-terminal region of YopN is critical for regulating Ysc-Yop activity at a later stage of T3SS assembly.
  •  
5.
  • Heil, Jan, et al. (författare)
  • Sarcopenia predicts reduced liver growth and reduced resectability in patients undergoing portal vein embolization before liver resection-A DRAGON collaborative analysis of 306 patients
  • 2022
  • Ingår i: HPB. - : ELSEVIER SCI LTD. - 1365-182X .- 1477-2574. ; 24:3, s. 413-421
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: After portal vein embolization (PVE) 30% fail to achieve liver resection. Malnutrition is a modifiable risk factor and can be assessed by radiological indices. This study investigates, if sarcopenia affects resectability and kinetic growth rate (KGR) after PVE. Methods: A retrospective study was performed of the outcome of PVE at 8 centres of the DRAGON collaborative from 2010 to 2019. All malignant tumour types were included. Sarcopenia was defined using gender, body mass and skeletal muscle index. First imaging after PVE was used for liver volumetry. Primary and secondary endpoints were resectability and KGR. Risk factors impacting liver growth were assessed in a multivariable analysis. Results: Eight centres identified 368 patients undergoing PVE. 62 patients (17%) had to be excluded due to unavailability of data. Among the 306 included patients, 112 (37%) were non-sarcopenic and 194 (63%) were sarcopenic. Sarcopenic patients had a 21% lower resectability rate (87% vs. 66%, p < 0.001) and a 23% reduced KGR (p = 0.02) after PVE. In a multivariable model dichotomized for KGR >2.3% standardized FLR (sFLR)/week, only sarcopenia and sFLR before embolization correlated with KGR. Conclusion: In this largest study of risk factors, sarcopenia was associated with reduced resectability and KGR in patients undergoing PVE.
  •  
6.
  • Höpken, Wolfram, et al. (författare)
  • Context-based Adaptation of Ubiquitous Web Applications in Tourism
  • 2008
  • Ingår i: Information and Communication Technologies in Tourism 2008 Proceedings of the International Conference in Innsbruck, Austria, 2008. - Vienna & New York : Springer. - 9783211772799 ; , s. 533-544
  • Konferensbidrag (refereegranskat)abstract
    • The customer nowadays expects ubiquitous access to information exactly relevant within the current context during all trip phases. I.e. information has to be provided in a highly personalised way and has to be accessible anytime and anywhere by any possible devices. Consequently, information systems have to adapt themselves to the current usage context. This paper presents an approach to dynamically adapt ubiquitous web applications in the dimensions content, design and behaviour to the complete usage context (i.e. user, current situation and used device), making use of an XML-based neutral representation of the web application’s user interface. The paper discusses existing approaches for adaptive systems, presents a general-purpose adaptation model and a corresponding IT-framework and introduces the application of the proposed approach within the Innsbruck.mobile web application
  •  
7.
  •  
8.
  • Mühlenkamp, Melanie C., et al. (författare)
  • Vitronectin Binds to a Specific Stretch within the Head Region of Yersinia Adhesin A and Thereby Modulates Yersinia enterocolitica Host Interaction
  • 2017
  • Ingår i: Journal of Innate Immunity. - : S. Karger AG. - 1662-811X .- 1662-8128. ; 9:1, s. 33-51
  • Tidskriftsartikel (refereegranskat)abstract
    • Complement resistance is an important virulence trait of Yersinia enterocolitica (Ye). The predominant virulence factor expressed by Ye is Yersinia adhesin A (YadA), which enables bacterial attachment to host cells and extracellular matrix and additionally allows the acquisition of soluble serum factors. The serum glycoprotein vitronectin (Vn) acts as an inhibitory regulator of the terminal complement complex by inhibiting the lytic pore formation. Here, we show YadA-mediated direct interaction of Ye with Vn and investigated the role of this Vn binding during mouse infection in vivo. Using different Yersinia strains, we identified a short stretch in the YadA head domain of Ye O:9 E40, similar to the ‘uptake region' of Y. pseudotuberculosis YPIII YadA, as crucial for efficient Vn binding. Using recombinant fragments of Vn, we found the C-terminal part of Vn, including heparin-binding domain 3, to be responsible for binding to YadA. Moreover, we found that Vn bound to the bacterial surface is still functionally active and thus inhibits C5b-9 formation. In a mouse infection model, we demonstrate that Vn reduces complement-mediated killing of Ye O:9 E40 and, thus, improved bacterial survival. Taken together, these findings show that YadA-mediated Vn binding influences Ye pathogenesis.
  •  
9.
  •  
10.
  • Shen, Xiantao, et al. (författare)
  • Bacterial Imprinting at Pickering Emulsion Interfaces.
  • 2014
  • Ingår i: Angewandte Chemie (International edition). - : Wiley. - 1521-3773. ; 53:40, s. 10687-10690
  • Tidskriftsartikel (refereegranskat)abstract
    • The tendency of bacteria to assemble at oil-water interfaces can be utilized to create microbial recognition sites on the surface of polymer beads. In this work, two different groups of bacteria were first treated with acryloyl-functionalized chitosan and then used to stabilize an oil-in-water emulsion composed of cross-linking monomers that were dispersed in aqueous buffer. Polymerization of the oil phase followed by removal of the bacterial template resulted in well-defined polymer beads bearing bacterial imprints. Chemical passivation of chitosan and cell displacement assays indicate that the bacterial recognition on the polymer beads was dependent on the nature of the pre-polymer and the target bacteria. The functional materials for microbial recognition show great potential for constructing cell-cell communication networks, biosensors, and new platforms for testing antibiotic drugs.
  •  
11.
  • Thibau, Arno, et al. (författare)
  • Long-Read Sequencing Reveals Genetic Adaptation of Bartonella Adhesin A Among Different Bartonella henselae Isolates
  • 2022
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Bartonella henselae is the causative agent of cat scratch disease and other clinical entities such as endocarditis and bacillary angiomatosis. The life cycle of this pathogen, with alternating host conditions, drives evolutionary and host-specific adaptations. Human, feline, and laboratory adapted B. henselae isolates often display genomic and phenotypic differences that are related to the expression of outer membrane proteins, for example the Bartonella adhesin A (BadA). This modularly-structured trimeric autotransporter adhesin is a major virulence factor of B. henselae and is crucial for the initial binding to the host via the extracellular matrix proteins fibronectin and collagen. By using next-generation long-read sequencing we demonstrate a conserved genome among eight B. henselae isolates and identify a variable genomic badA island with a diversified and highly repetitive badA gene flanked by badA pseudogenes. Two of the eight tested B. henselae strains lack BadA expression because of frameshift mutations. We suggest that active recombination mechanisms, possibly via phase variation (i.e., slipped-strand mispairing and site-specific recombination) within the repetitive badA island facilitate reshuffling of homologous domain arrays. The resulting variations among the different BadA proteins might contribute to host immune evasion and enhance long-term and efficient colonisation in the differing host environments. Considering the role of BadA as a key virulence factor, it remains important to check consistently and regularly for BadA surface expression during experimental infection procedures.
  •  
12.
  • Vaca, Diana J, et al. (författare)
  • Interaction of Bartonella henselae with Fibronectin Represents the Molecular Basis for Adhesion to Host Cells
  • 2022
  • Ingår i: Microbiology spectrum. - : American Society for Microbiology. - 2165-0497. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial adhesion to the host is the most decisive step in infections. Trimeric autotransporter adhesins (TAA) are important pathogenicity factors of Gram-negative bacteria. The prototypic TAA Bartonella adhesin A (BadA) from human-pathogenic Bartonella henselae mediates bacterial adherence to endothelial cells (ECs) and extracellular matrix proteins. Here, we determined the interaction between BadA and fibronectin (Fn) to be essential for bacterial host cell adhesion. BadA interactions occur within the heparin-binding domains of Fn. The exact binding sites were revealed by mass spectrometry analysis of chemically cross-linked whole-cell bacteria and Fn. Specific BadA interactions with defined Fn regions represent the molecular basis for bacterial adhesion to ECs and these data were confirmed by BadA-deficient bacteria and CRISPR-Cas knockout Fn host cells. Interactions between TAAs and the extracellular matrix might represent the key step for adherence of human-pathogenic Gram-negative bacteria to the host. IMPORTANCE Deciphering the mechanisms of bacterial host cell adhesion is a clue for preventing infections. We describe the underestimated role that the extracellular matrix protein fibronectin plays in the adhesion of human-pathogenic Bartonella henselae to host cells. Fibronectin-binding is mediated by a trimeric autotransporter adhesin (TAA) also present in many other human-pathogenic Gram-negative bacteria. We demonstrate that both TAA and host-fibronectin contribute significantly to bacterial adhesion, and we present the exact sequence of interacting amino acids from both proteins. Our work shows the domain-specific pattern of interaction between the TAA and fibronectin to adhere to host cells and opens the perspective to fight bacterial infections by inhibiting bacterial adhesion which represents generally the first step in infections.
  •  
13.
  • van Belkum, Alex, et al. (författare)
  • Host-pathogen adhesion as the basis of innovative diagnostics for emerging pathogens
  • 2021
  • Ingår i: Diagnostics. - : MDPI AG. - 2075-4418. ; 11:7
  • Forskningsöversikt (refereegranskat)abstract
    • Infectious diseases are an existential health threat, potentiated by emerging and re-emerging viruses and increasing bacterial antibiotic resistance. Targeted treatment of infectious diseases re-quires precision diagnostics, especially in cases where broad-range therapeutics such as antibiotics fail. There is thus an increasing need for new approaches to develop sensitive and specific in vitro diagnostic (IVD) tests. Basic science and translational research are needed to identify key microbial molecules as diagnostic targets, to identify relevant host counterparts, and to use this knowledge in developing or improving IVD. In this regard, an overlooked feature is the capacity of pathogens to adhere specifically to host cells and tissues. The molecular entities relevant for pathogen–surface interaction are the so-called adhesins. Adhesins vary from protein compounds to (poly-)saccharides or lipid structures that interact with eukaryotic host cell matrix molecules and receptors. Such interactions co-define the specificity and sensitivity of a diagnostic test. Currently, adhesin-receptor binding is typically used in the pre-analytical phase of IVD tests, focusing on pathogen enrichment. Further exploration of adhesin–ligand interaction, supported by present high-throughput “omics” technolo-gies, might stimulate a new generation of broadly applicable pathogen detection and characterization tools. This review describes recent results of novel structure-defining technologies allowing for detailed molecular analysis of adhesins, their receptors and complexes. Since the host ligands evolve slowly, the corresponding adhesin interaction is under selective pressure to maintain a constant receptor binding domain. IVD should exploit such conserved binding sites and, in particular, use the human ligand to enrich the pathogen. We provide an inventory of methods based on adhesion factors and pathogen attachment mechanisms, which can also be of relevance to currently emerging pathogens, including SARS-CoV-2, the causative agent of COVID-19.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13
Typ av publikation
tidskriftsartikel (9)
konferensbidrag (2)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (12)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Malmström, Johan (4)
Fuchs, Matthias (2)
Alonso, Alejandro (1)
Wang, Kai (1)
Sun, Kai (1)
Singh, Birendra (1)
visa fler...
Riesbeck, Kristian (1)
Wang, Xin (1)
Wang, Yi (1)
Meinitzer, Andreas (1)
Zhang, Qian (1)
Xu, Xin (1)
Nawawi, Abrar (1)
Schadde, Erik (1)
Smith, Caroline (1)
Bülow, Leif (1)
Hammerschmidt, Sven (1)
Chen, Yan (1)
Fuchs, Helmut (1)
Gailus-Durner, Valér ... (1)
Chen, Junyu (1)
Horsch, Marion (1)
Beckers, Johannes (1)
Wang, Wei (1)
Martin, Michael (1)
Brismar, Torkel B. (1)
Garcia, David (1)
Rigon, Luca (1)
Jonsson, Martin (1)
Lawrence, Jack (1)
Björnsson, Bergthor (1)
Sandström, Per (1)
Brasas, Valentas (1)
Lood, Rolf (1)
wang, Ping (1)
Wang, Li (1)
Izadi-Pruneyre, Nadi ... (1)
Xu, Hao (1)
Shi, Wei (1)
Cheng, Cheng (1)
Wang, Sihan (1)
Yang, Fan (1)
Ibrahim, Ahmed (1)
Büttner, Sabrina (1)
Schaller, Martin (1)
Xu, Sheng (1)
Sparrelid, Ernesto (1)
Wang, Xuan (1)
Ye, Lei (1)
Liu, Ting (1)
visa färre...
Lärosäte
Lunds universitet (6)
Mittuniversitetet (2)
Karolinska Institutet (2)
Göteborgs universitet (1)
Umeå universitet (1)
Stockholms universitet (1)
visa fler...
Linköpings universitet (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (8)
Naturvetenskap (4)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy