SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liti B.) "

Sökning: WFRF:(Liti B.)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ablikim, M., et al. (författare)
  • Measurement of branching fractions for psi(3686) -> gamma eta ', gamma eta, and gamma pi(0)
  • 2017
  • Ingår i: Physical Review D. - : AMER PHYSICAL SOC. - 2470-0010 .- 2470-0029. ; 96:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Using a data sample of 448 x 10(6) psi(3686) events collected with the BESIII detector operating at the BEPCII storage ring, the decays psi(3686) -> gamma eta and psi(3686) -> gamma pi(0) are observed with a statistical significance of 7.3 sigma and 6.7 sigma, respectively. The branching fractions are measured to be B(psi(3686) -> gamma eta) = (0.85 +/- 0.18 +/- 0.05) x 10(-6) and B(psi(3686) ->gamma pi(0)) = (0.95 +/- 0.16 +/- 0.05) x 10(-6). In addition, we measure the branching fraction of psi(3686) -> gamma eta' to be B(psi(3686) -> gamma eta') = (125.1 +/- 2.2 +/- 6.2)x10(-6), which represents an improvement of precision over previous results.
  •  
2.
  • Mozzachiodi, S., et al. (författare)
  • Aborting meiosis allows recombination in sterile diploid yeast hybrids
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Hybrids are often considered evolutionary dead ends because they do not generate viable offspring. Here, the authors show that sterile yeast hybrids generate genetic diversity through meiotic-like recombination by aborting meiosis and return to asexual growth. Hybrids between diverged lineages contain novel genetic combinations but an impaired meiosis often makes them evolutionary dead ends. Here, we explore to what extent an aborted meiosis followed by a return-to-growth (RTG) promotes recombination across a panel of 20 Saccharomyces cerevisiae and S. paradoxus diploid hybrids with different genomic structures and levels of sterility. Genome analyses of 275 clones reveal that RTG promotes recombination and generates extensive regions of loss-of-heterozygosity in sterile hybrids with either a defective meiosis or a heavily rearranged karyotype, whereas RTG recombination is reduced by high sequence divergence between parental subgenomes. The RTG recombination preferentially arises in regions with low local heterozygosity and near meiotic recombination hotspots. The loss-of-heterozygosity has a profound impact on sexual and asexual fitness, and enables genetic mapping of phenotypic differences in sterile lineages where linkage analysis would fail. We propose that RTG gives sterile yeast hybrids access to a natural route for genome recombination and adaptation.
  •  
3.
  • Chan, Sander, et al. (författare)
  • Climate Ambition and Sustainable Development for a New Decade : A Catalytic Framework
  • 2021
  • Ingår i: Global Policy. - : Wiley. - 1758-5880 .- 1758-5899. ; 12:3, s. 245-259
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper examines the Global Climate Action Agenda (GCAA) and discusses options to improve sub- and non-state involvement in post-2020 climate governance. A framework that stimulates sub- and non-state action is a necessary complement to national governmental action, as the latter falls short of achieving low-carbon and climate-resilient development as envisaged in the Paris Agreement. Applying design principles for an ideal-type orchestration framework, we review literature and gather expert judgements to assess whether the GCAA has been collaborative, comprehensive, evaluative and catalytic. Results show that there has been greater coordination among orchestrators, for instance in the organization of events. However, mobilization efforts remain event-driven and too little effort is invested in understanding the progress of sub- and non-state action. Data collection has improved, although more sophisticated indicators are needed to evaluate climate and sustainable development impacts. Finally, the GCAA has recorded more action, but relatively little by actors in developing countries. As the world seeks to recover from the COVID-19 crisis and enters a new decade of climate action, the GCAA could make a vital contribution in challenging times by helping governments keep and enhance climate commitments; strengthening capacity for sub- and non-state action; enabling accountability; and realizing sustainable development.
  •  
4.
  • D'Angiolo, M., et al. (författare)
  • A yeast living ancestor reveals the origin of genomic introgressions
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 587, s. 420-425
  • Tidskriftsartikel (refereegranskat)abstract
    • A yeast clonal descendant of an ancient hybridization event is identified and sheds light on the early evolution of the Saccharomyces cerevisiae Alpechin lineage and its abundant Saccharomyces paradoxus introgressions. Genome introgressions drive evolution across the animal(1), plant(2) and fungal(3) kingdoms. Introgressions initiate from archaic admixtures followed by repeated backcrossing to one parental species. However, how introgressions arise in reproductively isolated species, such as yeast(4), has remained unclear. Here we identify a clonal descendant of the ancestral yeast hybrid that founded the extant Saccharomyces cerevisiae Alpechin lineage(5), which carries abundant Saccharomyces paradoxus introgressions. We show that this clonal descendant, hereafter defined as a 'living ancestor', retained the ancestral genome structure of the first-generation hybrid with contiguous S. cerevisiae and S. paradoxus subgenomes. The ancestral first-generation hybrid underwent catastrophic genomic instability through more than a hundred mitotic recombination events, mainly manifesting as homozygous genome blocks generated by loss of heterozygosity. These homozygous sequence blocks rescue hybrid fertility by restoring meiotic recombination and are the direct origins of the introgressions present in the Alpechin lineage. We suggest a plausible route for introgression evolution through the reconstruction of extinct stages and propose that genome instability allows hybrids to overcome reproductive isolation and enables introgressions to emerge.
  •  
5.
  • Ibstedt, Sebastian, 1983, et al. (författare)
  • Concerted Evolution of Life Stage Performances Signals Recent Selection on Yeast Nitrogen Use.
  • 2015
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 1537-1719 .- 0737-4038. ; 32:1, s. 153-161
  • Tidskriftsartikel (refereegranskat)abstract
    • Exposing natural selection driving phenotypic and genotypic adaptive differentiation is an extraordinary challenge. Given that an organism's life stages are exposed to the same environmental variations, we reasoned that fitness components, such as the lag, rate, and efficiency of growth, directly reflecting performance in these life stages, should often be selected in concert. We therefore conjectured that correlations between fitness components over natural isolates, in a particular environmental context, would constitute a robust signal of recent selection. Critically, this test for selection requires fitness components to be determined by different genetic loci. To explore our conjecture, we exhaustively evaluated the lag, rate, and efficiency of asexual population growth of natural isolates of the model yeast Saccharomyces cerevisiae in a large variety of nitrogen-limited environments. Overall, fitness components were well correlated under nitrogen restriction. Yeast isolates were further crossed in all pairwise combinations and coinheritance of each fitness component and genetic markers were traced. Trait variations tended to map to quantitative trait loci (QTL) that were private to a single fitness component. We further traced QTLs down to single-nucleotide resolution and uncovered loss-of-function mutations in RIM15, PUT4, DAL1, and DAL4 as the genetic basis for nitrogen source use variations. Effects of SNPs were unique for a single fitness component, strongly arguing against pleiotropy between lag, rate, and efficiency of reproduction under nitrogen restriction. The strong correlations between life stage performances that cannot be explained by pleiotropy compellingly support adaptive differentiation of yeast nitrogen source use and suggest a generic approach for detecting selection.
  •  
6.
  • Liti, Gianni, et al. (författare)
  • Population genomics of domestic and wild yeasts.
  • 2009
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 458:7236, s. 337-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the completion of the genome sequence of Saccharomyces cerevisiae in 1996 (refs 1, 2), there has been a large increase in complete genome sequences, accompanied by great advances in our understanding of genome evolution. Although little is known about the natural and life histories of yeasts in the wild, there are an increasing number of studies looking at ecological and geographic distributions, population structure and sexual versus asexual reproduction. Less well understood at the whole genome level are the evolutionary processes acting within populations and species that lead to adaptation to different environments, phenotypic differences and reproductive isolation. Here we present one- to fourfold or more coverage of the genome sequences of over seventy isolates of the baker's yeast S. cerevisiae and its closest relative, Saccharomyces paradoxus. We examine variation in gene content, single nucleotide polymorphisms, nucleotide insertions and deletions, copy numbers and transposable elements. We find that phenotypic variation broadly correlates with global genome-wide phylogenetic relationships. S. paradoxus populations are well delineated along geographic boundaries, whereas the variation among worldwide S. cerevisiae isolates shows less differentiation and is comparable to a single S. paradoxus population. Rather than one or two domestication events leading to the extant baker's yeasts, the population structure of S. cerevisiae consists of a few well-defined, geographically isolated lineages and many different mosaics of these lineages, supporting the idea that human influence provided the opportunity for cross-breeding and production of new combinations of pre-existing variations.
  •  
7.
  • Stenberg, Simon, et al. (författare)
  • Control of mitochondrial superoxide production includes programmed mtDNA deletion and restoration
  • 2020
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Deletion of mitochondrial DNA in eukaryotes is mainly attributed to rare accidental events associated with mitochondrial replication or repair of double-strand breaks. We report the discovery that yeast cells arrest harmful intramitochondrial superoxide production by shutting down respiration through genetically controlled deletion of mitochondrial oxidative phosphorylation genes. We show that the regulatory circuitry underlying this editing critically involves the antioxidant enzyme superoxide dismutase 2 and two-way mitochondrial-nuclear communication. While mitochondrial DNA homeostasis is rapidly restored after cessation of a short-term superoxide stress, long-term stress causes maladaptive persistence of the deletion process, leading to complete annihilation of the cellular pool of intact mitochondrial genomes and irrevocable loss of respiratory ability. Our results may therefore be of etiological as well as therapeutic importance with regard to age-related mitochondrial impairment and disease.One-Sentence SummaryGenetically controlled editing of mitochondrial DNA is an integral part of the yeast’s defenses against oxidative damage.
  •  
8.
  • Stenberg, Simon, et al. (författare)
  • Genetically controlled mtDNA deletions prevent ROS damage by arresting oxidative phosphorylation
  • 2022
  • Ingår i: eLife. - : eLife Sciences Publications, Ltd. - 2050-084X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Deletion of mitochondrial DNA in eukaryotes is currently attributed to rare accidental events associated with mitochondrial replication or repair of double-strand breaks. We report the discovery that yeast cells arrest harmful intramitochondrial superoxide production by shutting down respiration through genetically controlled deletion of mitochondrial oxidative phosphorylation genes. We show that this process critically involves the antioxidant enzyme superoxide dismutase 2 and two-way mitochondrial-nuclear communication through Rtg2 and Rtg3. While mitochondrial DNA homeostasis is rapidly restored after cessation of a short-term superoxide stress, long-term stress causes maladaptive persistence of the deletion process, leading to complete annihilation of the cellular pool of intact mitochondrial genomes and irrevocable loss of respiratory ability. This shows that oxidative stress-induced mitochondrial impairment may be under strict regulatory control. If the results extend to human cells, the results may prove to be of etiological as well as therapeutic importance with regard to age-related mitochondrial impairment and disease.
  •  
9.
  • Stenberg, Simon, et al. (författare)
  • Genetically controlled mtDNA deletions prevent ROS damage by arresting oxidative phosphorylation.
  • 2022
  • Ingår i: eLife. - 2050-084X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Deletion of mitochondrial DNA in eukaryotes is currently attributed to rare accidental events associated with mitochondrial replication or repair of double-strand breaks. We report the discovery that yeast cells arrest harmful intramitochondrial superoxide production by shutting down respiration through genetically controlled deletion of mitochondrial oxidative phosphorylation genes. We show that this process critically involves the antioxidant enzyme superoxide dismutase 2 and two-way mitochondrial-nuclear communication through Rtg2 and Rtg3. While mitochondrial DNA homeostasis is rapidly restored after cessation of a short-term superoxide stress, long-term stress causes maladaptive persistence of the deletion process, leading to complete annihilation of the cellular pool of intact mitochondrial genomes and irrevocable loss of respiratory ability. This shows that oxidative stress-induced mitochondrial impairment may be under strict regulatory control. If the results extend to human cells, the results may prove to be of etiological as well as therapeutic importance with regard to age-related mitochondrial impairment and disease.
  •  
10.
  • Vazquez-Garcia, I., et al. (författare)
  • Clonal Heterogeneity Influences the Fate of New Adaptive Mutations
  • 2017
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 21:3, s. 732-744
  • Tidskriftsartikel (refereegranskat)abstract
    • The joint contribution of pre-existing and de novo genetic variation to clonal adaptation is poorly understood but essential to designing successful antimicrobial or cancer therapies. To address this, we evolve genetically diverse populations of budding yeast, S. cerevisiae, consisting of diploid cells with unique haplotype combinations. We study the asexual evolution of these populations under selective inhibition with chemotherapeutic drugs by time-resolved whole-genome sequencing and phenotyping. All populations undergo clonal expansions driven by de novo mutations but remain genetically and phenotypically diverse. The clones exhibit widespread genomic instability, rendering recessive de novo mutations homozygous and refining pre-existing variation. Finally, we decompose the fitness contributions of pre-existing and de novo mutations by creating a large recombinant library of adaptive mutations in an ensemble of genetic backgrounds. Both pre-existing and de novo mutations substantially contribute to fitness, and the relative fitness of preexisting variants sets a selective threshold for new adaptive mutations.
  •  
11.
  • Zörgö, Enikö, 1968, et al. (författare)
  • Ancient Evolutionary Trade-Offs between Yeast Ploidy States
  • 2013
  • Ingår i: Plos Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The number of chromosome sets contained within the nucleus of eukaryotic organisms is a fundamental yet evolutionarily poorly characterized genetic variable of life. Here, we mapped the impact of ploidy on the mitotic fitness of baker's yeast and its never domesticated relative Saccharomyces paradoxus across wide swaths of their natural genotypic and phenotypic space. Surprisingly, environment-specific influences of ploidy on reproduction were found to be the rule rather than the exception. These ploidy–environment interactions were well conserved across the 2 billion generations separating the two species, suggesting that they are the products of strong selection. Previous hypotheses of generalizable advantages of haploidy or diploidy in ecological contexts imposing nutrient restriction, toxin exposure, and elevated mutational loads were rejected in favor of more fine-grained models of the interplay between ecology and ploidy. On a molecular level, cell size and mating type locus composition had equal, but limited, explanatory power, each explaining 12.5%–17% of ploidy–environment interactions. The mechanism of the cell size–based superior reproductive efficiency of haploids during Li+ exposure was traced to the Li+ exporter ENA. Removal of the Ena transporters, forcing dependence on the Nha1 extrusion system, completely altered the effects of ploidy on Li+ tolerance and evoked a strong diploid superiority, demonstrating how genetic variation at a single locus can completely reverse the relative merits of haploidy and diploidy. Taken together, our findings unmasked a dynamic interplay between ploidy and ecology that was of unpredicted evolutionary importance and had multiple molecular roots.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy