SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lovric Alen) "

Sökning: WFRF:(Lovric Alen)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lee, Sunjae, et al. (författare)
  • TCSBN: a database of tissue and cancer specific biological networks
  • 2018
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 46:D1
  • Tidskriftsartikel (refereegranskat)abstract
    • Biological networks provide new opportunities for understanding the cellular biology in both health and disease states. We generated tissue specific integrated networks (INs) for liver, muscle and adipose tissues by integratingmetabolic, regulatory and protein-protein interaction networks. We also generated human co-expression networks (CNs) for 46 normal tissues and 17 cancers to explore the functional relationships between genes as well as their relationships with biological functions, and investigate the overlap between functional and physical interactions provided by CNs and INs, respectively. These networks can be employed in the analysis of omics data, provide detailed insight into disease mechanisms by identifying the key biological components and eventually can be used in the development of efficient treatment strategies. Moreover, comparative analysis of the networks may allow for the identification of tissue-specific targets that can be used in the development of drugs with the minimum toxic effect to other human tissues. These context-specific INs and CNs are presented in an interactive website http://inetmodels.com without any limitation.
  •  
2.
  • Lovric, Alen, et al. (författare)
  • Characterization of different fat depots in NAFLD using inflammation-associated proteome, lipidome and metabolome
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-alcoholic fatty liver disease (NAFLD) is recognized as a liver manifestation of metabolic syndrome, accompanied with excessive fat accumulation in the liver and other vital organs. Ectopic fat accumulation was previously associated with negative effects at the systemic and local level in the human body. Thus, we aimed to identify and assess the predictive capability of novel potential metabolic biomarkers for ectopic fat depots in non-diabetic men with NAFLD, using the inflammation-associated proteome, lipidome and metabolome. Myocardial and hepatic triglycerides were measured with magnetic spectroscopy while function of left ventricle, pericardial and epicardial fat, subcutaneous and visceral adipose tissue were measured with magnetic resonance imaging. Measured ectopic fat depots were profiled and predicted using a Random Forest algorithm, and by estimating the Area Under the Receiver Operating Characteristic curves. We have identified distinct metabolic signatures of fat depots in the liver (TAG50:1, glutamate, diSM18:0 and CE20:3), pericardium (N-palmitoyl-sphinganine, HGF, diSM18:0, glutamate, and TNFSF14), epicardium (sphingomyelin, CE20:3, PC38:3 and TNFSF14), and myocardium (CE20:3, LAPTGF-beta 1, glutamate and glucose). Our analyses highlighted non-invasive biomarkers that accurately predict ectopic fat depots, and reflect their distinct metabolic signatures in subjects with NAFLD.
  •  
3.
  • Sahebekhtiari, Navid, et al. (författare)
  • Plasma Proteomics Analysis Reveals Dysregulation of Complement Proteins and Inflammation in Acquired Obesity—A Study on Rare BMI-Discordant Monozygotic Twin Pairs
  • 2019
  • Ingår i: Proteomics - Clinical Applications. - : Wiley. - 1862-8354 .- 1862-8346. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The purpose of this study is to elucidate the effect of excess body weight and liver fat on the plasma proteome without interference from genetic variation. Experimental Design: The effect of excess body weight is assessed in young, healthy monozygotic twins from pairs discordant for body mass index (intrapair difference (Δ) in BMI > 3 kg m −2 , n = 26) with untargeted LC-MS proteomics quantification. The effect of liver fat is interrogated via subgroup analysis of the BMI-discordant twin cohort: liver fat discordant pairs (Δliver fat > 2%, n = 12) and liver fat concordant pairs (Δliver fat < 2%, n = 14), measured by magnetic resonance spectroscopy. Results: Seventy-five proteins are differentially expressed, with significant enrichment for complement and inflammatory response pathways in the heavier co-twins. The complement dysregulation is found in obesity in both the liver fat subgroups. The complement and inflammatory proteins are significantly associated with adiposity measures, insulin resistance and impaired lipids. Conclusions and Clinical Relevance: The early pathophysiological mechanisms in obesity are incompletely understood. It is shown that aberrant complement regulation in plasma is present in very early stages of clinically healthy obese persons, independently of liver fat and in the absence of genetic variation that typically confounds human studies.
  •  
4.
  • Svensson, Michael B., Med Dr, docent, et al. (författare)
  • Discordant gene expression in subcutaneous adipose and skeletal muscle tissues in response to exercise training
  • 2024
  • Ingår i: Physiological Reports. - : John Wiley & Sons. - 2051-817X. ; 12:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Exercise has different effects on different tissues in the body, the sum of which may determine the response to exercise and the health benefits. In the present study, we aimed to investigate whether physical training regulates transcriptional network communites common to both skeletal muscle (SM) and subcutaneous adipose tissue (SAT). Eight such shared transcriptional communities were found in both tissues. Eighteen young overweight adults voluntarily participated in 7 weeks of combined strength and endurance training (five training sessions per week). Biopsies were taken from SM and SAT before and after training. Five of the network communities were regulated by training in SM but showed no change in SAT. One community involved in insulin- AMPK signaling and glucose utilization was upregulated in SM but downregulated in SAT. This diverging exercise regulation was confirmed in two independent studies and was also associated with BMI and diabetes in an independent cohort. Thus, the current finding is consistent with the differential responses of different tissues and suggests that body composition may influence the observed individual whole-body metabolic response to exercise training and help explain the observed attenuated whole-body insulin sensitivity after exercise training, even if it has significant effects on the exercising muscle.
  •  
5.
  • Svensson, Michael, et al. (författare)
  • Discordant gene expression in subcutaneous adipose and skeletal muscle tissues in response to exercise training
  • 2024
  • Ingår i: Physiological Reports. - : John Wiley & Sons. - 2051-817X. ; 12:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Exercise has different effects on different tissues in the body, the sum of which may determine the response to exercise and the health benefits. In the present study, we aimed to investigate whether physical training regulates transcriptional network communites common to both skeletal muscle (SM) and subcutaneous adipose tissue (SAT). Eight such shared transcriptional communities were found in both tissues. Eighteen young overweight adults voluntarily participated in 7 weeks of combined strength and endurance training (five training sessions per week). Biopsies were taken from SM and SAT before and after training. Five of the network communities were regulated by training in SM but showed no change in SAT. One community involved in insulin- AMPK signaling and glucose utilization was upregulated in SM but downregulated in SAT. This diverging exercise regulation was confirmed in two independent studies and was also associated with BMI and diabetes in an independent cohort. Thus, the current finding is consistent with the differential responses of different tissues and suggests that body composition may influence the observed individual whole-body metabolic response to exercise training and help explain the observed attenuated whole-body insulin sensitivity after exercise training, even if it has significant effects on the exercising muscle.
  •  
6.
  • van der Kolk, Birgitta W., et al. (författare)
  • Molecular pathways behind acquired obesity : Adipose tissue and skeletal muscle multiomics in monozygotic twin pairs discordant for BMI
  • 2021
  • Ingår i: Cell Reports Medicine. - : Elsevier BV. - 2666-3791. ; 2:4, s. 100226-
  • Tidskriftsartikel (refereegranskat)abstract
    • Tissue-specific mechanisms prompting obesity-related development complications in humans remain unclear. We apply multiomics analyses of subcutaneous adipose tissue and skeletal muscle to examine the effects of acquired obesity among 49 BMI-discordant monozygotic twin pairs. Overall, adipose tissue appears to be more affected by excess body weight than skeletal muscle. In heavier co-twins, we observe a transcriptional pattern of downregulated mitochondrial pathways in both tissues and upregulated inflammatory pathways in adipose tissue. In adipose tissue, heavier co-twins exhibit lower creatine levels; in skeletal muscle, glycolysis- and redox stress-related protein and metabolite levels remain higher. Furthermore, metabolomics analyses in both tissues reveal that several proinflammatory lipids are higher and six of the same lipid derivatives are lower in acquired obesity. Finally, in adipose tissue, but not in skeletal muscle, mitochondrial downregulation and upregulated inflammation are associated with a fatty liver, insulin resistance, and dyslipidemia, suggesting that adipose tissue dominates in acquired obesity.
  •  
7.
  • Zhang, C., et al. (författare)
  • The acute effect of metabolic cofactor supplementation: a potential therapeutic strategy against non-alcoholic fatty liver disease
  • 2020
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 16:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The prevalence of non-alcoholic fatty liver disease (NAFLD) continues to increase dramatically, and there is no approved medication for its treatment. Recently, we predicted the underlying molecular mechanisms involved in the progression of NAFLD using network analysis and identified metabolic cofactors that might be beneficial as supplements to decrease human liver fat. Here, we first assessed the tolerability of the combined metabolic cofactors including l-serine, N-acetyl-l-cysteine (NAC), nicotinamide riboside (NR), and l-carnitine by performing a 7-day rat toxicology study. Second, we performed a human calibration study by supplementing combined metabolic cofactors and a control study to study the kinetics of these metabolites in the plasma of healthy subjects with and without supplementation. We measured clinical parameters and observed no immediate side effects. Next, we generated plasma metabolomics and inflammatory protein markers data to reveal the acute changes associated with the supplementation of the metabolic cofactors. We also integrated metabolomics data using personalized genome-scale metabolic modeling and observed that such supplementation significantly affects the global human lipid, amino acid, and antioxidant metabolism. Finally, we predicted blood concentrations of these compounds during daily long-term supplementation by generating an ordinary differential equation model and liver concentrations of serine by generating a pharmacokinetic model and finally adjusted the doses of individual metabolic cofactors for future human clinical trials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
Typ av publikation
tidskriftsartikel (7)
Typ av innehåll
refereegranskat (7)
Författare/redaktör
Lovric, Alen (7)
Arif, Muhammad (4)
Benfeitas, Rui (3)
Borén, Jan, 1963 (3)
Mardinoglu, Adil, 19 ... (3)
Mardinoglu, Adil (2)
visa fler...
Nielsen, Jens B, 196 ... (2)
Uhlén, Mathias (2)
Zhang, C. (2)
Åkerfeldt, Torbjörn (2)
Björnson, Elias, 198 ... (2)
Bidkhori, Gholamreza (2)
Ståhlman, Marcus, 19 ... (2)
Rissanen, Aila (2)
Kaprio, Jaakko (2)
Gustafsson, Thomas (2)
Rullman, Eric (2)
Turkez, Hasan (1)
Marschall, Hanns-Ulr ... (1)
Abdellah, Tebani (1)
Lee, Sunjae (1)
Adiels, Martin, 1976 (1)
Taskinen, Marja-Riit ... (1)
Taskinen, M. R. (1)
Hakkarainen, A. (1)
Lundbom, N. (1)
Groop, Per Henrik (1)
Pietilainen, Kirsi H ... (1)
Zamboni, Nicola (1)
Kim, Woonghee (1)
Bergh, Per-Olof (1)
Svensson, Michael (1)
Nieminen, M. S. (1)
Hakkarainen, Antti (1)
Lundbom, Jesper (1)
Lundbom, Nina (1)
Ozcan, Mehmet (1)
Miao, Zong (1)
Graner, M. (1)
Pentikainen, M. O. (1)
Nyman, K. (1)
Siren, R. (1)
Pietilainen, K. H. (1)
Saraswat, Mayank (1)
Renkonen, Risto (1)
Liu, Zhengtao (1)
Jukarainen, Sakari (1)
Deshmukh, Sumit (1)
Shobky, Mohamed AI (1)
Juszczak, Kajetan (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (5)
Chalmers tekniska högskola (4)
Karolinska Institutet (4)
Göteborgs universitet (3)
Uppsala universitet (2)
Umeå universitet (1)
visa fler...
Stockholms universitet (1)
visa färre...
Språk
Engelska (7)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (7)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy