SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ludescher C) "

Sökning: WFRF:(Ludescher C)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Büntgen, Ulf, et al. (författare)
  • Prominent role of volcanism in Common Era climate variability and human history
  • 2020
  • Ingår i: Dendrochronologia. - : Elsevier BV. - 1125-7865 .- 1612-0051. ; 64
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2020 Elsevier GmbH Climate reconstructions for the Common Era are compromised by the paucity of annually-resolved and absolutely-dated proxy records prior to medieval times. Where reconstructions are based on combinations of different climate archive types (of varying spatiotemporal resolution, dating uncertainty, record length and predictive skill), it is challenging to estimate past amplitude ranges, disentangle the relative roles of natural and anthropogenic forcing, or probe deeper interrelationships between climate variability and human history. Here, we compile and analyse updated versions of all the existing summer temperature sensitive tree-ring width chronologies from the Northern Hemisphere that span the entire Common Era. We apply a novel ensemble approach to reconstruct extra-tropical summer temperatures from 1 to 2010 CE, and calculate uncertainties at continental to hemispheric scales. Peak warming in the 280s, 990s and 1020s, when volcanic forcing was low, was comparable to modern conditions until 2010 CE. The lowest June–August temperature anomaly in 536 not only marks the beginning of the coldest decade, but also defines the onset of the Late Antique Little Ice Age (LALIA). While prolonged warmth during Roman and medieval times roughly coincides with the tendency towards societal prosperity across much of the North Atlantic/European sector and East Asia, major episodes of volcanically-forced summer cooling often presaged widespread famines, plague outbreaks and political upheavals. Our study reveals a larger amplitude of spatially synchronized summer temperature variation during the first millennium of the Common Era than previously recognised.
  •  
3.
  • Buntgen, U., et al. (författare)
  • Recognising bias in Common Era temperature reconstructions
  • 2022
  • Ingår i: Dendrochronologia. - : Elsevier BV. - 1125-7865 .- 1612-0051. ; 74
  • Tidskriftsartikel (refereegranskat)abstract
    • A steep decline in the quality and quantity of available climate proxy records before medieval times challenges any comparison of reconstructed temperature and hydroclimate trends and extremes between the first and second half of the Common Era. Understanding of the physical causes, ecological responses and societal consequences of past climatic changes, however, demands highly-resolved, spatially-explicit, seasonally-defined and absolutely-dated archives over the entire period in question. Continuous efforts to improve existing proxy records and reconstruction methods and to develop new ones, as well as clear communication of all uncertainties (within and beyond academia) must be central tasks for the paleoclimate community.
  •  
4.
  • Liu, T., et al. (författare)
  • Teleconnections among tipping elements in the Earth system
  • 2023
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 13, s. 67-74
  • Tidskriftsartikel (refereegranskat)abstract
    • Tipping elements are components of the Earth system that may shift abruptly and irreversibly from one state to another at specific thresholds. It is not well understood to what degree tipping of one system can influence other regions or tipping elements. Here, we propose a climate network approach to analyse the global impacts of a prominent tipping element, the Amazon Rainforest Area (ARA). We find that the ARA exhibits strong correlations with regions such as the Tibetan Plateau (TP) and West Antarctic ice sheet. Models show that the identified teleconnection propagation path between the ARA and the TP is robust under climate change. In addition, we detect that TP snow cover extent has been losing stability since 2008. We further uncover that various climate extremes between the ARA and the TP are synchronized under climate change. Our framework highlights that tipping elements can be linked and also the potential predictability of cascading tipping dynamics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy