SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Luo Jingyu) "

Sökning: WFRF:(Luo Jingyu)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alimena, Juliette, et al. (författare)
  • Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider
  • 2020
  • Ingår i: Journal of Physics G. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 47:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments-as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER-to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity 'dark showers', highlighting opportunities for expanding the LHC reach for these signals.
  •  
2.
  • Luo, Zhengyi, et al. (författare)
  • Demand Flexibility of Residential Buildings : Definitions, Flexible Loads, and Quantification Methods
  • 2022
  • Ingår i: Engineering. - : Elsevier Ltd. - 2095-8099. ; 16, s. 123-140
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reviews recent research on the demand flexibility of residential buildings in regard to definitions, flexible loads, and quantification methods. A systematic distinction of the terminology is made, including the demand flexibility, operation flexibility, and energy flexibility of buildings. A comprehensive definition of building demand flexibility is proposed based on an analysis of the existing definitions. Moreover, the flexibility capabilities and operation characteristics of the main residential flexible loads are summarized and compared. Models and evaluation indicators to quantify the flexibility of these flexible loads are reviewed and summarized. Current research gaps and challenges are identified and analyzed as well. The results indicate that previous studies have focused on the flexibility of central air conditioning, electric water heaters, wet appliances, refrigerators, and lighting, where the proportion of studies focusing on each of these subjects is 36.7%, 25.7%, 14.7%, 9.2%, and 8.3%, respectively. These flexible loads are different in running modes, usage frequencies, seasons, and capabilities for shedding, shifting, and modulation, while their response characteristics are not yet clear. Furthermore, recommendations are given for the application of white-, black-, and grey-box models for modeling flexible loads in different situations. Numerous static flexibility evaluation indicators that are based on the aspects of power, temporality, energy, efficiency, economics, and the environment have been proposed in previous publications, but a consensus and standardized evaluation framework is lacking. This review can help readers better understand building demand flexibility and learn about the characteristics of different residential flexible loads, while also providing suggestions for future research on the modeling techniques and evaluation metrics of residential building demand flexibility.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy