SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mäkitie O) "

Sökning: WFRF:(Mäkitie O)

  • Resultat 1-25 av 52
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Alabi, RO, et al. (författare)
  • Utilizing Deep Machine Learning for Prognostication of Oral Squamous Cell Carcinoma-A Systematic Review
  • 2021
  • Ingår i: Frontiers in oral health. - : Frontiers Media SA. - 2673-4842. ; 2, s. 686863-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The application of deep machine learning, a subfield of artificial intelligence, has become a growing area of interest in predictive medicine in recent years. The deep machine learning approach has been used to analyze imaging and radiomics and to develop models that have the potential to assist the clinicians to make an informed and guided decision that can assist to improve patient outcomes. Improved prognostication of oral squamous cell carcinoma (OSCC) will greatly benefit the clinical management of oral cancer patients. This review examines the recent development in the field of deep learning for OSCC prognostication. The search was carried out using five different databases—PubMed, Scopus, OvidMedline, Web of Science, and Institute of Electrical and Electronic Engineers (IEEE). The search was carried time from inception until 15 May 2021. There were 34 studies that have used deep machine learning for the prognostication of OSCC. The majority of these studies used a convolutional neural network (CNN). This review showed that a range of novel imaging modalities such as computed tomography (or enhanced computed tomography) images and spectra data have shown significant applicability to improve OSCC outcomes. The average specificity, sensitivity, area under receiving operating characteristics curve [AUC]), and accuracy for studies that used spectra data were 0.97, 0.99, 0.96, and 96.6%, respectively. Conversely, the corresponding average values for these parameters for computed tomography images were 0.84, 0.81, 0.967, and 81.8%, respectively. Ethical concerns such as privacy and confidentiality, data and model bias, peer disagreement, responsibility gap, patient-clinician relationship, and patient autonomy have limited the widespread adoption of these models in daily clinical practices. The accumulated evidence indicates that deep machine learning models have great potential in the prognostication of OSCC. This approach offers a more generic model that requires less data engineering with improved accuracy.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  • Kreutzberger, AJB, et al. (författare)
  • SARS-CoV-2 requires acidic pH to infect cells
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 119:38, s. e2209514119-
  • Tidskriftsartikel (refereegranskat)abstract
    • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cell entry starts with membrane attachment and ends with spike (S) protein–catalyzed membrane fusion depending on two cleavage steps, namely, one usually by furin in producing cells and the second by TMPRSS2 on target cells. Endosomal cathepsins can carry out both. Using real-time three-dimensional single-virion tracking, we show that fusion and genome penetration require virion exposure to an acidic milieu of pH 6.2 to 6.8, even when furin and TMPRSS2 cleavages have occurred. We detect the sequential steps of S1-fragment dissociation, fusion, and content release from the cell surface in TMPRRS2-overexpressing cells only when exposed to acidic pH. We define a key role of an acidic environment for successful infection, found in endosomal compartments and at the surface of TMPRSS2-expressing cells in the acidic milieu of the nasal cavity.
  •  
25.
  • Kreutzberger, AJB, et al. (författare)
  • SARS-CoV-2 requires acidic pH to infect cells
  • 2022
  • Ingår i: bioRxiv : the preprint server for biology. - : Cold Spring Harbor Laboratory.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • SARS-CoV-2 cell entry starts with membrane attachment and ends with spike-protein (S) catalyzed membrane fusion depending on two cleavage steps, one usually by furin in producing cells and the second by TMPRSS2 on target cells. Endosomal cathepsins can carry out both. Using real-time 3D single virion tracking, we show fusion and genome penetration requires virion exposure to an acidic milieu of pH 6.2-6.8, even when furin and TMPRSS2 cleavages have occurred. We detect the sequential steps of S1-fragment dissociation, fusion, and content release from the cell surface in TMPRRS2 overexpressing cells only when exposed to acidic pH. We define a key role of an acidic environment for successful infection, found in endosomal compartments and at the surface of TMPRSS2 expressing cells in the acidic milieu of the nasal cavity.Significance StatementInfection by SARS-CoV-2 depends upon the S large spike protein decorating the virions and is responsible for receptor engagement and subsequent fusion of viral and cellular membranes allowing release of virion contents into the cell. Using new single particle imaging tools, to visualize and track the successive steps from virion attachment to fusion, combined with chemical and genetic perturbations of the cells, we provide the first direct evidence for the cellular uptake routes of productive infection in multiple cell types and their dependence on proteolysis of S by cell surface or endosomal proteases. We show that fusion and content release always require the acidic environment from endosomes, preceded by liberation of the S1 fragment which depends on ACE2 receptor engagement.One sentence summaryDetailed molecular snapshots of the productive infectious entry pathway of SARS-CoV-2 into cells
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 52

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy