SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Müller H.S.P.) "

Sökning: WFRF:(Müller H.S.P.)

  • Resultat 1-25 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Muller, Sebastien, 1976, et al. (författare)
  • OH+ and H2O+ absorption toward PKS 1830-211
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 595, s. A128(1-10)
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the detection of OH+ and H2O+ in the z = 0.89 absorber toward the lensed quasar PKS 1830-211. The abundance ratio of OH+ and H2O+ is used to quantify the molecular hydrogen fraction (fH2) and the cosmic-ray ionization rate of atomic hydrogen (ζH) along two lines of sight, located at 2 kpc and 4 kpc to either side of the absorber's center. The molecular fraction decreases outward, from 0.04 to 0.02, comparable to values measured in the Milky Way at similar galactocentric radii. For ζH , we find values of 2 × 10-14 s-1 and 3 × 10-15 s-1, respectively, which are slightly higher than in the Milky Way at comparable galactocentric radii, possibly due to a higher average star formation activity in the z = 0.89 absorber. The ALMA observations of OH+, H2O+, and other hydrides toward PKS 1830-211reveal the multi-phase composition of the absorbing gas. Taking the column density ratios along the southwest and northeast lines of sight as a proxy of molecular fraction, we classify the species ArH+, OH+, H2Cl+, H2O+, CH, and HF as tracing gases increasingly more molecular. Incidentally, our data allow us to improve the accuracy of H2O+ rest frequencies and thus refine the spectroscopic parameters.
  •  
2.
  • Calcutt, H., et al. (författare)
  • The ALMA-PILS survey: complex nitriles towards IRAS 16293-2422
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 616
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Complex organic molecules are readily detected in the inner regions of the gaseous envelopes of forming protostars. Their detection is crucial to understanding the chemical evolution of the Universe and exploring the link between the early stages of star formation and the formation of solar system bodies, where complex organic molecules have been found in abundance. In particular, molecules that contain nitrogen are interesting due to the role nitrogen plays in the development of life and the compact scales such molecules have been found to trace around forming protostars. Aims. The goal of this work is to determine the inventory of one family of nitrogen-bearing organic molecules, complex nitriles (molecules with a -C N functional group) towards two hot corino sources in the low-mass protostellar binary IRAS 16293-2422. This work explores the abundance differences between the two sources, the isotopic ratios, and the spatial extent derived from molecules containing the nitrile functional group. Methods. Using data from the Protostellar Interferometric Line Survey (PILS) obtained with ALMA, we determine abundances and excitation temperatures for the detected nitriles. We also present a new method for determining the spatial structure of sources with high line density and large velocity gradients-Velocity-corrected INtegrated emission (VINE) maps. Results. We detect methyl cyanide (CH3CN) as well as five of its isotopologues, including CHD2CN, which is the first detection in the interstellar medium (ISM). We also detect ethyl cyanide (C2H5CN), vinyl cyanide (C2H3CN), and cyanoacetylene (HC3N). We find that abundances are similar between IRAS 16293A and IRAS 16293B on small scales except for vinyl cyanide which is only detected towards the latter source. This suggests an important difference between the sources either in their evolutionary stage or warm-up timescales. We also detect a spatially double-peaked emission for the first time in molecular emission in the A source, suggesting that this source is showing structure related to a rotating toroid of material. Conclusions. With high-resolution observations, we have been able to show for the first time a number of important similarities and differences in the nitrile chemistry in these objects. These illustrate the utility of nitriles as potential tracers of the physical conditions in star-forming regions.
  •  
3.
  • Calcutt, Hannah, 1988, et al. (författare)
  • The ALMA-PILS survey: first detection of methyl isocyanide (CH3NC) in a solar-type protostar
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Tidskriftsartikel (refereegranskat)abstract
    • Methyl isocyanide (CH3NC) is the isocyanide with the largest number of atoms confirmed in the interstellar medium (ISM), but it is not an abundant molecule, having only been detected towards a handful of objects. Conversely, its isomer, methyl cyanide (CH3CN), is one of the most abundant complex organic molecules detected in the ISM, with detections in a variety of low- and high-mass sources. We use ALMA observations from the Protostellar Interferometric Line Survey (PILS) to search for methyl isocyanide and compare its abundance with that of its isomer methyl cyanide. We use a new line catalogue from the Cologne Database for Molecular Spectroscopy (CDMS) to identify methyl isocyanide lines. We also model the chemistry with an updated version of the three-phase chemical kinetics model MAGICKAL, presenting the first chemical modelling of methyl isocyanide to date. We detect methyl isocyanide for the first time in a solar-type protostar, IRAS 16293-2422 B, and present upper limits for its companion protostar, IRAS 16293-2422 A. Methyl isocyanide is found to be at least 20 times more abundant in source B compared to source A, with a CH3CN/CH3NC abundance ratio of 200 in IRAS 16293-2422 B and >5517 in IRAS 16293-2422 A. We also present the results of a chemical model of methyl isocyanide chemistry in both sources, and discuss the implications on methyl isocyanide formation mechanisms and the relative evolutionary stages of both sources.
  •  
4.
  • Calcutt, Hannah, 1988, et al. (författare)
  • The ALMA-PILS survey: propyne (CH3CCH) in IRAS 16293–2422
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 631
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Propyne (CH3CCH), also known as methyl acetylene, has been detected in a variety of environments, from Galactic star-forming regions to extragalactic sources. These molecules are excellent tracers of the physical conditions in star-forming regions, allowing the temperature and density conditions surrounding a forming star to be determined. Aims. This study explores the emission of CH3CCH in the low-mass protostellar binary, IRAS 16293–2422, and examines the spatial scales traced by this molecule, as well as its formation and destruction pathways. Methods. Atacama Large Millimeter/submillimeter Array (ALMA) observations from the Protostellar Interferometric Line Survey (PILS) were used to determine the abundances and excitation temperatures of CH3CCH towards both protostars. This data allows us to explore spatial scales from 70 to 2400 au. This data is also compared with the three-phase chemical kinetics model MAGICKAL, to explore the chemical reactions of this molecule. Results. CH3CCH is detected towards both IRAS 16293A and IRAS 16293B, and is found the hot corino components, one around each source, in the PILS dataset. Eighteen transitions above 3σ are detected, enabling robust excitation temperatures and column densities to be determined in each source. In IRAS 16293A, an excitation temperature of 90 K and a column density of 7.8 × 1015 cm−2 best fits the spectra. In IRAS 16293B, an excitation temperature of 100 K and 6.8 × 1015 cm−2 best fits the spectra. The chemical modelling finds that in order to reproduce the observed abundances, both gas-phase and grain-surface reactions are needed. The gas-phase reactions are particularly sensitive to the temperature at which CH4 desorbs from the grains. Conclusions. CH3CCH is a molecule whose brightness and abundance in many different regions can be utilised to provide a benchmark of molecular variation with the physical properties of star-forming regions. It is essential when making such comparisons, that the abundances are determined with a good understanding of the spatial scale of the emitting region, to ensure that accurate abundances are derived.
  •  
5.
  • Coutens, A., et al. (författare)
  • First detection of cyanamide (NH2CN) towards solar-type protostars
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • Searches for the prebiotically relevant cyanamide (NH 2 CN) towards solar-type protostars have not been reported in the literature. We present here the first detection of this species in the warm gas surrounding two solar-type protostars, using data from the Atacama Large Millimeter/Submillimeter Array Protostellar Interferometric Line Survey (PILS) of IRAS 16293-2422 B and observations from the IRAM Plateau de Bure Interferometer of NGC 1333 IRAS2A. We also detected the deuterated and 13 C isotopologs of NH 2 CN towards IRAS 16293-2422 B. This is the first detection of NHDCN in the interstellar medium. Based on a local thermodynamic equilibrium analysis, we find that the deuteration of cyanamide (∼1.7%) is similar to that of formamide (NH 2 CHO), which may suggest that these two molecules share NH 2 as a common precursor. The NH 2 CN/NH 2 CHO abundance ratio is about 0.2 for IRAS 16293-2422 B and 0.02 for IRAS2A, which is comparable to the range of values found for Sgr B2. We explored the possible formation of NH 2 CN on grains through the NH 2 + CN reaction using the chemical model MAGICKAL. Grain-surface chemistry appears capable of reproducing the gas-phase abundance of NH 2 CN with the correct choice of physical parameters.
  •  
6.
  • Coutens, A., et al. (författare)
  • The ALMA-PILS survey: First detection of nitrous acid (HONO) in the interstellar medium
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 623
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitrogen oxides are thought to play a significant role as a nitrogen reservoir and to potentially participate in the formation of more complex species. Until now, only NO, NO, and HNO have been detected in the interstellar medium. We report the first interstellar detection of nitrous acid (HONO). Twelve lines were identified towards component B of the low-mass protostellar binary IRAS 16293-2422 with the Atacama Large Millimeter/submillimeter Array, at the position where NO and NO have previously been seen. A local thermodynamic equilibrium model was used to derive the column density (∼9 × 1014 cm in a 0 .″5 beam) and excitation temperature (∼100 K) of this molecule. HNO, NO, NO+, and HNO3 were also searched for in the data, but not detected. We simulated the HONO formation using an updated version of the chemical code Nautilus and compared the results with the observations. The chemical model is able to reproduce satisfactorily the HONO, NO, and NO abundances, but not the NO, HNO, and NHOH abundances. This could be due to some thermal desorption mechanisms being destructive and therefore limiting the amount of HNO and NHOH present in the gas phase. Other options are UV photodestruction of these species in ices or missing reactions potentially relevant at protostellar temperatures.
  •  
7.
  • Coutens, A., et al. (författare)
  • The ALMA-PILS survey: First detections of deuterated formamide and deuterated isocyanic acid in the interstellar medium
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 590
  • Tidskriftsartikel (refereegranskat)abstract
    • Formamide (NH2CHO) has previously been detected in several star-forming regions and is thought to be a precursor for different prebiotic molecules. Its formation mechanism is still debated, however. Observations of formamide, related species, and their isopotologues may provide useful clues to the chemical pathways leading to their formation. The Protostellar Interferometric Line Survey (PILS) represents an unbiased, high angular resolution and sensitivity spectral survey of the low-mass protostellar binary IRAS 16293-2422 with the Atacama Large Millimeter/submillimeter Array (ALMA). For the first time, we detect the three singly deuterated forms of NH2CHO (NH2CDO, cis-and trans-NHDCHO), as well as DNCO towards the component B of this binary source. The images reveal that the different isotopologues are all present in the same region. Based on observations of the 13C isotopologues of formamide and a standard 12C/13C ratio, the deuterium fractionation is found to be similar for the three different forms with a value of about 2%. The DNCO/HNCO ratio is also comparable to the D/H ratio of formamide (~1%). These results are in agreement with the hypothesis that NH2CHO and HNCO are chemically related through grain-surface formation.
  •  
8.
  • Danilovich, Taissa, 1987, et al. (författare)
  • Chemical tracers of a highly eccentric AGB–main-sequence star binary
  • 2024
  • Ingår i: Nature Astronomy. - 2397-3366.
  • Tidskriftsartikel (refereegranskat)abstract
    • Binary interactions have been proposed to explain a variety of circumstellar structures seen around evolved stars, including asymptotic giant branch (AGB) stars and planetary nebulae. Studies resolving the circumstellar envelopes of AGB stars have revealed spirals, disks and bipolar outflows, with shaping attributed to interactions with a companion. Here we use a combined chemical and dynamical analysis to reveal a highly eccentric and long-period orbit for W Aquilae, a binary system containing an AGB star and a main-sequence companion. Our results are based on anisotropic SiN emission, the detections of irregular NS and SiC emission towards the S-type star, and density structures observed in the CO emission. These features are all interpreted as having formed during periastron interactions. Our astrochemistry-based method can yield stringent constraints on the orbital parameters of long-period binaries containing AGB stars, and will be applicable to other systems.
  •  
9.
  • Drozdovskaya, M. N., et al. (författare)
  • The ALMA-PILS survey: The sulphur connection between protostars and comets: IRAS 16293-2422 B and 67P/Churyumov-Gerasimenko
  • 2018
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 476:4, s. 4949-4964
  • Tidskriftsartikel (refereegranskat)abstract
    • The evolutionary past of our Solar system can be pieced together by comparing analogous lowmass protostars with remnants of our Protosolar Nebula - comets. Sulphur-bearing molecules may be unique tracers of the joint evolution of the volatile and refractory components. ALMA Band 7 data from the large unbiased Protostellar Interferometric Line Survey are used to search for S-bearing molecules in the outer disc-like structure, ~60 au from IRAS 16293-2422 B, and are compared with data on 67P/Churyumov-Gerasimenko (67P/C-G) stemming from the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instrument aboard Rosetta. Species such as SO 2 , SO, OCS, CS, H 2 CS, H 2 S, and CH 3 SH are detected via at least one of their isotopologues towards IRAS 16293-2422 B. The search reveals a first-time detection of OC 33 S towards this source and a tentative first-time detection of C 36 S towards a low-mass protostar. The data show that IRAS 16293-2422 B contains much more OCS than H 2 S in comparison to 67P/C-G; meanwhile, the SO/SO 2 ratio is in close agreement between the two targets. IRAS 16293-2422 B has a CH 3 SH/H 2 CS ratio in range of that of our Solar system (differences by a factor of 0.7-5.3). It is suggested that the levels of UV radiation during the initial collapse of the systems may have varied and have potentially been higher for IRAS 16293-2422 B due to its binary nature; thereby, converting more H 2 S into OCS. It remains to be conclusively tested if this also promotes the formation of S-bearing complex organics. Elevated UV levels of IRAS 16293-2422 B and a warmer birth cloud of our Solar system may jointly explain the variations between the two low-mass systems.
  •  
10.
  • Goicoechea, J.R., et al. (författare)
  • VELOCITY-RESOLVED [C II] EMISSION AND [C II]/FIR MAPPING ALONG ORION WITH HERSCHEL
  • 2015
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 812:1, s. 75-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first ~7.′5 × 11.′5 velocity-resolved (~0.2 km/s) map of the [C II] 158 μm line toward the Orion molecular cloud1 (OMC1) taken with the Herschel/HIFI instrument. In combination with far-IR (FIR) photometric images and velocity-resolved maps of the H41α hydrogen recombination and CO J = 2–1 lines, this data set provides an unprecedented view of the intricate small-scale kinematics of the ionized/photodissociation region (PDR)/molecular gas interfaces and of the radiative feedback from massive stars. The main contribution to the [C II] luminosity (~85%) is from the extended, FUV-illuminated face of the cloud (G0 > 500, nH > 5 × 10^3 cm^−3) and from dense PDRs (G0>~10^4, nH>~10^5 cm^−3) at the interface between OMC 1 and the H II region surrounding the Trapezium cluster. Around ~15% of the [C II] emission arises from a different gas component without a CO counterpart. The [C II] excitation, PDR gas turbulence, line opacity (from [13C II]), and role of the geometry of the illuminating stars with respect to the cloud are investigated. We construct maps of the L[CII]/LFIR and LFIR/MGas ratios and show that L[CII]/LFIR decreases from the extended cloud component (~10^−2–10^−3) to the more opaque star-forming cores (~10^-3-10−4). The lowest values are reminiscent of the “[C II] deficit” seen in local ultraluminous IR galaxies hosting vigorous star formation. Spatial correlation analysis shows that the decreasing L[C II]/LFIR ratio correlates better with the column density of dust through the molecular cloud than with LFIR/MGas. We conclude that the [C II]-emitting column relative to the total dust column along each line of sight is responsible for the observed L[C II]/LFIR variations through the cloud.
  •  
11.
  • Gordon, I.E., et al. (författare)
  • The HITRAN2020 molecular spectroscopic database
  • 2022
  • Ingår i: Journal of Quantitative Spectroscopy and Radiative Transfer. - : Elsevier. - 0022-4073 .- 1879-1352. ; 277
  • Tidskriftsartikel (refereegranskat)abstract
    • The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particular, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years). All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replacements of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH3F, GeH4, CS2, CH3I and NF3. Many new vibrational bands were added, extending the spectral coverage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening parameters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules. The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITRAN Application Programming Interface (HAPI). The functionality of both tools has been extended for the new edition.
  •  
12.
  • Gupta, H., et al. (författare)
  • Detection of OH+ and H2O+ towards Orion KL
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L47-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report observations of the reactive molecular ions OH+, H2O+, and H3O+ towards Orion KL with Herschel/HIFI. All three N = 1-0 fine-structure transitions of OH+ at 909, 971, and 1033 GHz and both fine-structure components of the doublet ortho-H2O+ 111-000 transition at 1115 and 1139 GHz were detected; an upper limit was obtained for H3O+. OH+ and H2O+ are observed purely in absorption, showing a narrow component at the source velocity of 9 km s-1, and a broad blueshifted absorption similar to that reported recently for HF and para-H218O, and attributed to the low velocity outflow of Orion KL. We estimate column densities of OH+ and H2O+ for the 9 km s-1 component of 9 ± 3 × 1012 cm-2 and 7 ± 2 × 1012 cm-2, and those in the outflow of 1.9 ± 0.7 × 1013 cm-2 and 1.0 ± 0.3 × 1013 cm-2. Upper limits of 2.4 × 1012 cm-2 and 8.7 × 1012 cm-2 were derived for the column densities of ortho and para-H3O+ from transitions near 985 and 1657 GHz. The column densities of the three ions are up to an order of magnitude lower than those obtained from recent observations of W31C and W49N. The comparatively low column densities may be explained by a higher gas density despite the assumption of a very high ionization rate.
  •  
13.
  • Jacobsen, S. K., et al. (författare)
  • The ALMA-PILS survey: 3D modeling of the envelope, disks and dust filament of IRAS 16293–2422
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Class 0 protostellar binary IRAS 16293–2422 is an interesting target for (sub)millimeter observations due to, both, the rich chemistry toward the two main components of the binary and its complex morphology. Its proximity to Earth allows the study of its physical and chemical structure on solar system scales using high angular resolution observations. Such data reveal a complex morphology that cannot be accounted for in traditional, spherical 1D models of the envelope. Aims. The purpose of this paper is to study the environment of the two components of the binary through 3D radiative transfer modeling and to compare with data from the Atacama Large Millimeter/submillimeter Array. Such comparisons can be used to constrain the protoplanetary disk structures, the luminosities of the two components of the binary and the chemistry of simple species. Methods. We present 13CO, C17O and C18O J=3–2 observations from the ALMA Protostellar Interferometric Line Survey (PILS), together with a qualitative study of the dust and gas density distribution of IRAS 16293-2422. A 3D dust and gas model including disks and a dust filament between the two protostars is constructed which qualitatively reproduces the dust continuum and gas line emission. Results. Radiative transfer modeling in our sampled parameter space suggests that, while the disk around source A could not be constrained, the disk around source B has to be vertically extended. This puffed-up structure can be obtained with both a protoplanetary disk model with an unexpectedly high scale-height and with the density solution from an infalling, rotating collapse. Combined constraints on our 3D model, from observed dust continuum and CO isotopologue emission between the sources, corroborate that source A should be at least six times more luminous than source B. We also demonstrate that the volume of high-temperature regions where complex organic molecules arise is sensitive to whether or not the total luminosity is in a single radiation source or distributed into two sources, affecting the interpretation of earlier chemical modeling efforts of the IRAS 16293-2422 hot corino which used a single-source approximation. Conclusions. Radiative transfer modeling of source A and B, with the density solution of an infalling, rotating collapse or a protoplan- etary disk model, can match the constraints for the disk-like emission around source A and B from the observed dust continuum and CO isotopologue gas emission. If a protoplanetary disk model is used around source B, it has to have an unusually high scale-height in order to reach the dust continuum peak emission value, while fulfilling the other observational constraints. Our 3D model requires source
  •  
14.
  • Ligterink, N. F. W., et al. (författare)
  • The ALMA-PILS survey: Detection of CH3NCO toward the low-mass protostar IRAS 16293-2422 and laboratory constraints on its formation
  • 2017
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966.
  • Tidskriftsartikel (refereegranskat)abstract
    • Methyl isocyanate (CH3NCO) belongs to a select group of interstellar molecules considered to be relevant precursors in the formation of larger organic compounds, including those with peptide bonds. The molecule has only been detected in a couple of high-mass protostars and potentially on comets. A formation route on icy grains has been postulated for this molecule but experimental evidence is lacking. Here we ex- tend the range of environments where methyl isocyanate is found, and unambiguously identify CH3NCO through the detection of 43 unblended transitions in the ALMA Protostellar Interferometric Line Survey (PILS) of the low mass solar-type protostel- lar binary IRAS 16293-2422. The molecule is detected toward both components of the binary with a ratio HNCO/CH3NCO ∼4–12. The isomers CH3CNO and CH3OCN are not identified, resulting in upper abundance ratios of CH3NCO/CH3CNO > 100 and CH3NCO/CH3OCN > 10. The resulting abundance ratios compare well with those found for related N-containing species toward high-mass protostars. To constrain its formation, a set of cryogenic UHV experiments is performed. VUV irradiation of CH4:HNCO mixtures at 20 K strongly indicate that methyl isocyanate can be formed in the solid-state through CH3 and (H)NCO recombinations. Combined with gas-grain models that include this reaction, the solid-state route is found to be a plausible sce- nario to explain the methyl isocyanate abundances found in IRAS 16293-2422. Key
  •  
15.
  • Ligterink, N. F. W., et al. (författare)
  • The ALMA-PILS survey: Stringent limits on small amines and nitrogen-oxides towards IRAS 16293–2422B
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 619
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Hydroxylamine (NH2OH) and methylamine (CH3NH2) have both been suggested as precursors to the formation of amino acids and are therefore, of interest to prebiotic chemistry. Their presence in interstellar space and formation mechanisms, however, are not well established. Aims. We aim to detect both amines and their potential precursor molecules NO, N2O, and CH2NH towards the low-mass protostellar binary IRAS 16293–2422, in order to investigate their presence and constrain their interstellar formation mechanisms around a young Sun-like protostar. Methods. ALMA observations from the unbiased, high-angular resolution and sensitivity Protostellar Interferometric Line Survey (PILS) are used. Spectral transitions of the molecules under investigation are searched for with the CASSIS line analysis software. Results. CH2NH and N2O are detected for the first time, towards a low-mass source, the latter molecule through confirmation with the single-dish TIMASSS survey. NO is also detected. CH3NH2 and NH2OH are not detected and stringent upper limit column densities are determined. Conclusions. The non-detection of CH3NH2 and NH2OH limits the importance of formation routes to amino acids involving these species. The detection of CH2NH makes amino acid formation routes starting from this molecule plausible. The low abundances of CH2NH and CH3NH2 compared to Sgr B2 indicate that different physical conditions influence their formation in low- and high-mass sources.
  •  
16.
  • Lis, D. C., et al. (författare)
  • Herschel/HIFI discovery of interstellar chloronium (H2Cl+)
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first detection of chloronium, H_2Cl^+, in the interstellar medium, using the HIFI instrument aboard the Herschel Space Observatory. The 2_12-1_01 lines of ortho-H\_2^35Cl^+ and ortho-H\_2^37Cl^+ are detected in absorption towards NGC 6334I, and the 1_11-0_00 transition of para-H\_2^35Cl^+ is detected in absorption towards NGC 6334I and Sgr B2(S). The H_2Cl^+ column densities are compared to those of the chemically-related species HCl. The derived HCl/H_2Cl^+ column density ratios, ~1-10, are within the range predicted by models of diffuse and dense photon dominated regions (PDRs). However, the observed H_2Cl^+ column densities, in excess of 10^13 cm^-2, are significantly higher than the model predictions. Our observations demonstrate the outstanding spectroscopic capabilities of HIFI for detecting new interstellar molecules and providing key constraints for astrochemical models.
  •  
17.
  • Lykke, J. M., et al. (författare)
  • The ALMA-PILS survey: First detections of ethylene oxide, acetone and propanal toward the low-mass protostar IRAS 16293-2422
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 597, s. A53-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. One of the open questions in astrochemistry is how complex organic and prebiotic molecules are formed. The unsurpassed sensitivity of the Atacama Large Millimeter/submillimeter Array (ALMA) takes the quest for discovering molecules in the warm and dense gas surrounding young stars to the next level. Aims. Our aim is to start the process of compiling an inventory of oxygen-bearing complex organic molecules toward the solar-type Class 0 protostellar binary IRAS 16293-2422 from an unbiased spectral survey with ALMA, Protostellar Interferometric Line Survey (PILS). Here we focus on the new detections of ethylene oxide (c-C2H4O), acetone (CH3COCH3), and propanal (C2H5CHO). Methods. With ALMA, we surveyed the spectral range from 329 to 363 GHz at 0.5? (60 AU diameter) resolution. Using a simple model for the molecular emission in local thermodynamical equilibrium, the excitation temperatures and column densities of each species were constrained. Results. We successfully detect propanal (44 lines), ethylene oxide (20 lines) and acetone (186 lines) toward one component of the protostellar binary, IRAS 16293B. The high resolution maps demonstrate that the emission for all investigated species originates from the compact central region close to the protostar. This, along with a derived common excitation temperature of Tex ? 125 K, is consistent with a coexistence of these molecules in the same gas. Conclusions. The observations mark the first detections of acetone, propanal and ethylene oxide toward a low-mass protostar. The relative abundance ratios of the two sets of isomers, a CH3COCH3/C2H5CHO ratio of 8 and a CH3CHO/c-C2H4O ratio of 12, are comparable to previous observations toward high-mass protostars. The majority of observed abundance ratios from these results as well as those measured toward high-mass protostars are up to an order of magnitude above the predictions from chemical models. This may reflect either missing reactions or uncertain rates in the chemical networks. The physical conditions, such as temperatures or densities, used in the models, may not be applicable to solar-type protostars either.
  •  
18.
  • Manigand, S., et al. (författare)
  • The ALMA-PILS survey: The first detection of doubly-deuterated methyl formate (CHD2OCHO) in the ISM
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746.
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies of deuterated isotopologues of complex organic molecules can provide important constraints on their origin in regions of star formation. In particular, the abundances of deuterated species are very sensitive to the physical conditions in the environment where they form. Due to the low temperatures in regions of star formation, these isotopologues are enhanced to significant levels, making detections of multiply-deuterated species possible. However, for complex organic species, only the multiply-deuterated variants of methanol and methyl cyanide have been reported so far. The aim of this paper is to initiate the characterisation of multiply-deuterated variants of complex organic species with the first detection of doubly-deuterated methyl formate, CHD2OCHO. We use ALMA observations from the Protostellar Interferometric Line Survey (PILS) of the protostellar binary IRAS 16293-2422, in the spectral range of 329.1 GHz to 362.9 GHz. We report the first detection of doubly-deuterated methyl formate CHD2OCHO in the ISM. The D/H ratio of CHD2OCHO is found to be 2-3 times higher than the D/H ratio of CH2DOCHO for both sources, similar to the results for formaldehyde from the same dataset. The observations are compared to a gas-grain chemical network coupled to a dynamical physical model, tracing the evolution of a molecular cloud until the end of the Class 0 protostellar stage. The overall D/H ratio enhancements found in the observations are of the same order of magnitude as the predictions from the model for the early stages of Class 0 protostars. However, the higher D/H ratio of CHD2OCHO compared to the D/H ratio of CH2DOCHO is still not predicted by the model. This suggests that a mechanism is enhancing the D/H ratio of singly- and doubly-deuterated methyl formate that is not in the model, e.g. mechanisms for H-D substitutions.
  •  
19.
  • Montargès, M., et al. (författare)
  • The VLT/SPHERE view of the A TOMIUM cool evolved star sample: I. Overview: Sample characterization through polarization analysis
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 671
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Low- and intermediate-mass asymptotic giant stars and massive red supergiant stars are important contributors to the chemical enrichment of the Universe. They are among the most efficient dust factories of the Galaxy, harboring chemically rich circumstellar environments. Yet, the processes that lead to dust formation or the large-scale shaping of the mass loss still escape attempts at modeling. Aims. Through the ATOMIUM project, we aim to present a consistent view of a sample of 17 nearby cool evolved stars. Our goals are to unveil the dust-nucleation sites and morphologies of the circumstellar envelope of such stars and to probe ambient environments with various conditions. This will further enhance our understanding of the roles of stellar convection and pulsations, and that of companions in shaping the dusty circumstellar medium. Methods. Here we present and analyze VLT/SPHERE-ZIMPOL polarimetric maps obtained in the visible (645- 820 nm) of 14 out of the 17 ATOMIUM sources. They were obtained contemporaneously with the ALMA high spatial resolution data. To help interpret the polarized signal, we produced synthetic maps of light scattering by dust, through 3D radiative transfer simulations with the RADMC3D code. Results. The degree of linear polarization (DoLP) observed by ZIMPOL spreads across several optical filters. We infer that it primarily probes dust located just outside of the point spread function of the central source, and in or near the plane of the sky. The polarized signal is mainly produced by structures with a total optical depth close to unity in the line of sight, and it represents only a fraction of the total circumstellar dust. The maximum DoLP ranges from 0.03- 0.38 depending on the source, fractions that can be reproduced by our 3D pilot models for grains composed of olivine, melilite, corundum, enstatite, or forsterite. The spatial structure of the DoLP shows a diverse set of shapes, including clumps, arcs, and full envelopes. Only for three sources do we note a correlation between the ALMA CO ν = 0, J = 2-1 and SiO ν = 0, J = 5-4 lines, which trace the gas density, and the DoLP, which traces the dust. Conclusions. The clumpiness of the DoLP and the lack of a consistent correlation between the gas and the dust location show that, in the inner environment, dust formation occurs at very specific sites. This has potential consequences for the derived mass-loss rates and dust-to-gas ratio in the inner region of the circumstellar environment. Except for π1 Gru and perhaps GY Aql, we do not detect interactions between the circumstellar wind and the hypothesized companions that shape the wind at larger scales. This suggests that the orbits of any other companions are tilted out of the plane of the sky.
  •  
20.
  • Neufeld, D.A., et al. (författare)
  • Discovery of interstellar CF
  • 2006
  • Ingår i: Astronomy & Astrophysics. ; 454, s. L37-L40
  • Tidskriftsartikel (refereegranskat)
  •  
21.
  • Persson, Magnus V., 1983, et al. (författare)
  • The ALMA-PILS Survey: Formaldehyde deuteration in warm gas on small scales toward IRAS 16293-2422 B
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 610
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The enhanced degrees of deuterium fractionation observed in envelopes around protostars demonstrate the importance of chemistry at low temperatures, relevant in pre- and protostellar cores. Formaldehyde is an important species in the formation of methanol and more complex molecules. Aims. Here, we aim to present the first study of formaldehyde deuteration on small scales around the prototypical low-mass protostar IRAS 16293-2422 using high spatial and spectral resolution Atacama Large Millimeter/submillimeter Array (ALMA) observations. We determine the excitation temperature, abundances and fractionation level of several formaldehyde isotopologues, including its deuterated forms. Methods. Excitation temperature and column densities of formaldehyde in the gas close to one of the components of the binary were constrained through modeling of optically thin lines assuming local thermodynamical equilibrium. The abundance ratios were compared to results from previous single dish observations, astrochemical models and local ISM values. Results. Numerous isotopologues of formaldehyde are detected, among them H 2 C 17 O, and D 2 13 CO for the first time in the ISM. The large range of upper energy levels covered by the HDCO lines help constrain the excitation temperature to 106 ± 13 K. Using the derived column densities, formaldehyde shows a deuterium fractionation of HDCO/H 2 CO = 6.5 ± 1%, D 2 CO/HDCO = 12.8 -4.1 +3.3 %, and D 2 CO/H 2 CO = 0.6(4) ± 0.1%. The isotopic ratios derived are 16 O/ 18 O = 805 -79 +43 , 18 O/ 17 O = 3.2 -0.3 +0.2 , and 12 C/ 13 C = 56 -11 +8 . Conclusions. The HDCO/H 2 CO ratio is lower than that found in previous studies, highlighting the uncertainties involved in interpreting single dish observations of the inner warm regions. The D 2 CO/HDCO ratio is only slightly larger than the HDCO/H 2 CO ratio. This is consistent with formaldehyde forming in the ice as soon as CO has frozen onto the grains, with most of the deuteration happening toward the end of the prestellar core phase. A comparison with available time-dependent chemical models indicates that the source is in the early Class 0 stage.
  •  
22.
  • Schilke, P., et al. (författare)
  • Ubiquitous Argonium, ArH+, in the Diffuse Interstellar Medium
  • 2014
  • Ingår i: 13th International HITRAN Conference, Cambridge MA, USA.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • ArH+ is isoelectronic with HCl. The J = 1-0 and 2-1 transitions of 36ArH+ near 617.5 and 1234.6 GHz, respectively, have been identified very recently as emission lines in spectra obtained with Herschel toward the Crab Nebula supernova remnant.1 On Earth, 40Ar is by far the most abundant isotope, being almost exclusively formed by the radioactive decay of 40K. However, 36Ar is the dominant isotope in the Universe.In the course of unbiased line surveys of the massive and very luminous Galactic Center star-forming regions Sagittarius B2(M) and (N) with the high-resolution instrument HIFI on board of Herschel, we detected the J = 1-0 transition of 36ArH+ as a moderately strong absorption line initially associated with an unidentified carrier.2 In both cases, the absorption feature is unique in its appearance at all velocity components associated with diffuse foreground molecular clouds, together with its conspicuous absence at velocities related to the denser sources themselves. Model calculations are able to reproduce the derived ArH+ column densities and suggest that argonium resides in the largely atomic, diffuse interstellar medium with a molecular fraction of no more than ˜10-3. The 38ArH+ isotopologue was also detected.Subsequent observations toward the continuum sources W51, W49, W31C, and G34.3+0.1 resulted in unequivocal detections of 36ArH+ absorption. Hence, argonium is a good probe of the transition zone between atomic and molecular gas, in particular in combination with OH+ and H2O+, whose abundances peak at a molecular fraction of ˜0.1. Moreover, argonium is a good indicator of an enhanced cosmic ray ionization rate. Therefore, it may be prominent toward, e.g., active galactic nuclei (AGNs) in addition to supernova remnants.
  •  
23.
  • Schilke, P., et al. (författare)
  • Ubiquitous argonium (ArH$^{+}$) in the diffuse interstellar medium: A molecular tracer of almost purely atomic gas
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 566:June, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: We describe the assignment of a previously unidentified interstellar absorption line to ArH+ and discuss its relevance in the context of hydride absorption in diffuse gas with a low H2 fraction. The confidence of the assignment to ArH+ is discussed, and the column densities are determined toward several lines of sight. The results are then discussed in the framework of chemical models, with the aim of explaining the observed column densities. Methods: We fitted the spectral lines with multiple velocity components, and determined column densities from the line-to-continuum ratio. The column densities of ArH+ were compared to those of other species, tracing interstellar medium (ISM) components with different H2 abundances. We constructed chemical models that take UV radiation and cosmic ray ionization into account. Results: Thanks to the detection of two isotopologues, 36ArH+ and 38ArH+, we are confident about the carrier assignment to ArH+. NeH+ is not detected with a limit of [NeH+]/[ArH+] ≤ 0.1. The derived column densities agree well with the predictions of chemical models. ArH+ is a unique tracer of gas with a fractional H2 abundance of 10-4 - 10-3 and shows little correlation to H2O+, which traces gas with a fractional H2 abundance of ≈0.1. Conclusions: A careful analysis of variations in the ArH+, OH+, H2O+, and HF column densities promises to be a faithful tracer of the distribution of the H2 fractional abundance by providing unique information on a poorly known phase in the cycle of interstellar matter and on its transition from atomic diffuse gas to dense molecular gas traced by CO emission. Abundances of these species put strong observational constraints upon magnetohydrodynamical (MHD)simulations of the interstellar medium, and potentially could evolve into a tool characterizing the ISM. Paradoxically, the ArH+ molecule is a better tracer of almost purely atomic hydrogen gas than Hi itself, since Hi can also be present in gas with a significant molecular content, but ArH+ singles out gas that is >99.9% atomic.
  •  
24.
  • Taquet, V., et al. (författare)
  • Linking interstellar and cometary O2: A deep search for 16O18O in the solar-Type protostar IRAS 16293b-2422
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 618
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent measurements carried out at comet 67P/Churyumov-Gerasimenko (67P) with the Rosetta probe revealed that molecular oxygen, O2, is the fourth most abundant molecule in comets. Models show that O2 is likely of primordial nature, coming from the interstellar cloud from which our solar system was formed. However, gaseous O2 is an elusive molecule in the interstellar medium with only one detection towards quiescent molecular clouds, in the ρ Oph A core. We perform a deep search for molecular oxygen, through the 21-01 rotational transition at 234 GHz of its 16O18O isotopologue, towards the warm compact gas surrounding the nearby Class 0 protostar IRAS 16293-2422 B with the ALMA interferometer. We also look for the chemical daughters of O2, HO2, and H2O2. Unfortunately, the H2O2 rotational transition is dominated by ethylene oxide c-C2H4O while HO2 is not detected. The targeted 16O18O transition is surrounded by two brighter transitions at ± 1 km s-1 relative to the expected 16O18O transition frequency. After subtraction of these two transitions, residual emission at a 3σ level remains, but with a velocity offset of 0.3-0.5 km s-1 relative to the source velocity, rendering the detection "tentative". We derive the O2 column density for two excitation temperatures Tex of 125 and 300 K, as indicated by other molecules, in order to compare the O2 abundance between IRAS 16293 and comet 67P. Assuming that 16O18O is not detected and using methanol CH3OH as a reference species, we obtain a [O2]/[CH3OH] abundance ratio lower than 2-5, depending on the assumed Tex, a three to four times lower abundance than the [O2]/[CH3OH] ratio of 5-15 found in comet 67P. Such a low O2 abundance could be explained by the lower temperature of the dense cloud precursor of IRAS 16293 with respect to the one at the origin of our solar system that prevented efficient formation of O2 in interstellar ices.
  •  
25.
  • Wallström, Sofia, 1988, et al. (författare)
  • ATOMIUM: Molecular inventory of 17 oxygen-rich evolved stars observed with ALMA
  • 2024
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 681
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The dusty winds of cool evolved stars are a major contributor of the newly synthesised material enriching the Galaxy and future generations of stars. However, the details of the physics and chemistry behind dust formation and wind launching have yet to be pinpointed. Recent spatially resolved observations show the importance of gaining a more comprehensive view of the circumstellar chemistry, but a comparative study of the intricate interplay between chemistry and physics is still difficult because observational details such as frequencies and angular resolutions are rarely comparable. Aims. Aiming to overcome these deficiencies, ATOMIUM is an ALMA Large Programme to study the physics and chemistry of the circumstellar envelopes of a diverse set of oxygen-rich evolved stars under homogeneous observing conditions at three angular resolutions between ∼0.02′1.4′. Here we summarize the molecular inventory of these sources, and the correlations between stellar parameters and molecular content. Methods. Seventeen oxygen-rich or S-Type asymptotic giant branch (AGB) and red supergiant (RSG) stars have been observed in several tunings with ALMA Band 6, targeting a range of molecules to probe the circumstellar envelope and especially the chemistry of dust formation close to the star. We systematically assigned the molecular carriers of the spectral lines and measured their spectroscopic parameters and the angular extent of the emission of each line from integrated intensity maps. Results. Across the ATOMIUM sample, we detect 291 transitions of 24 different molecules and their isotopologues. This includes several first detections in oxygen-rich AGB/RSG stars: PO v = 1, SO2 v1 = 1 and v2 = 2, and several high energy H2O transitions. We also find several first detections in S-Type AGB stars: vibrationally excited HCN v2 = 2,3 and SiS v = 4,5,6, as well as first detections of the molecules SiC, AlCl, and AlF in W Aql. Overall, we find strong correlations between the following molecular pairs: CS and SiS, CS and AlF, NaCl and KCl, AlO and SO, SO2 and SO, and SO2 and H2O; meaning both molecules tend to have more detected emission lines in the same sources. The measured isotopic ratios of Si and S are found to be consistent with previous measurements, except for an anomalously high 29Si/30Si ratio of 4 ± 1 in the RSG VX Sgr. Conclusions. This paper presents the overall molecular inventory and an initial analysis of the large ATOMIUM dataset, laying the groundwork for future work deriving molecular abundances and abundance profiles using radiative transfer modeling which will provide more rigorous tests for chemical models.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy