SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Maat Schieman Marion L C) "

Search: WFRF:(Maat Schieman Marion L C)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Smith, Ruben, et al. (author)
  • Cholinergic neuronal defect without cell loss in Huntington's disease.
  • 2006
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 15:21, s. 3119-3131
  • Journal article (peer-reviewed)abstract
    • Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG-repeat expansion in the huntingtin (IT15) gene. The striatum is one of the regions most affected by neurodegeneration, resulting in the loss of the medium-sized spiny neurons. Traditionally, the large cholinergic striatal interneurons are believed to be spared. Recent studies demonstrate that neuronal dysfunction without cell death also plays an important role in early and mid-stages of the disease. Here, we report that cholinergic transmission is affected in a HD transgenic mouse model (R6/1) and in tissues from HD patients. Stereological analysis shows no loss of cholinergic neurons in the striatum or septum in R6/1 mice. In contrast, the levels of mRNA and protein for vesicular acetylcholine transporter (VAChT) and choline acetyltransferase (ChAT) are decreased in the striatum and cortex, and acetylcholine esterase activity is lowered in the striatum of R6/1 mice already at young ages. Accordingly, VAChT is also reduced in striatal tissue from patients with HD. The decrease of VAChT in the patient samples studied is restricted to the striatum and does not occur in the hippocampus or the spinal cord. The expression and localization of REST/NRSF, a transcriptional regulator for the VAChT and ChAT genes, are not altered in cholinergic neurons. We show that the R6/1 mice exhibit severe deficits in learning and reference memory. Taken together, our data show that the cholinergic system is dysfunctional in R6/1 and HD patients. Consequently, they provide a rationale for testing of pro-cholinergic drugs in this disease.
  •  
2.
  • van der Burg, Jorien m, et al. (author)
  • Gastrointestinal dysfunction contributes to weight loss in Huntington's disease mice.
  • 2011
  • In: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 44, s. 1-8
  • Journal article (peer-reviewed)abstract
    • Weight loss is the most important non-neurological complication of Huntington's disease (HD). It correlates with disease progression and affects the quality of life of HD patients, suggesting that it could be a valuable target for therapeutic intervention. The mechanism underlying weight loss in HD is unknown. Mutant huntingtin, the protein that causes the disease, is not only expressed in the brain, but also along the gastrointestinal (GI) tract. Here we demonstrate that the GI tract of HD mice is affected. At the anatomical level we observed loss of enteric neuropeptides, as well as decreased mucosal thickness and villus length. Exploring the functions of the GI system we found impaired gut motility, diarrhea, and malabsorption of food. The degree of malabsorption was inversely associated with body weight, suggesting that GI dysfunction plays an important role in weight loss in HD mice. In summary, these observations suggest that the GI tract is affected in HD mice and that GI dysfunction contributes to nutritional deficiencies and weight loss.
  •  
3.
  • Petersén, Åsa, et al. (author)
  • Orexin loss in Huntington's disease.
  • 2005
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 14:1, s. 39-47
  • Journal article (peer-reviewed)abstract
    • Huntington's disease (HD) is a devastating neurodegenerative disorder caused by an expanded CAG repeat in the gene encoding huntingtin, a protein of unknown function. Mutant huntingtin forms intracellular aggregates and is associated with neuronal death in select brain regions. The most studied mouse model (R6/2) of HD replicates many features of the disease, but has been reported to exhibit only very little neuronal death. We describe for the first time a dramatic atrophy and loss of orexin neurons in the lateral hypothalamus of R6/2 mice. Importantly, we also found a significant atrophy and loss of orexin neurons in Huntington patients. Like animal models and patients with impaired orexin function, the R6/2 mice were narcoleptic. Both the number of orexin neurons in the lateral hypothalamus and the levels of orexin in the cerebrospinal fluid were reduced by 72% in end-stage R6/2 mice compared with wild-type littermates, suggesting that orexin could be used as a biomarker reflecting neurodegeneration. Our results show that the loss of orexin is a novel and potentially very important pathology in HD.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view