SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Macías J) "

Sökning: WFRF:(Macías J)

  • Resultat 1-25 av 132
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
2.
  • de Rojas, I., et al. (författare)
  • Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic discoveries of Alzheimer’s disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer’s disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer’s disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer’s disease. © 2021, The Author(s).
  •  
3.
  • Aartsen, M. G., et al. (författare)
  • Multipole analysis of IceCube data to search for dark matter accumulated in the Galactic halo
  • 2015
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 75:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Dark matter which is bound in the Galactic halo might self-annihilate and produce a flux of stable final state particles, e. g. high energy neutrinos. These neutrinos can be detected with IceCube, a cubic-kilometer sized Cherenkov detector. Given IceCube's large field of view, a characteristic anisotropy of the additional neutrino flux is expected. In this paper we describe a multipole method to search for such a large-scale anisotropy in IceCube data. This method uses the expansion coefficients of a multipole expansion of neutrino arrival directions and incorporates signal-specific weights for each expansion coefficient. We apply the technique to a high-purity muon neutrino sample from the Northern Hemisphere. The final result is compatible with the null-hypothesis. As no signal was observed, we present limits on the self-annihilation cross-section averaged over the relative velocity distribution down to 1.9x10(-23) cm(3) s(-1) for a dark matter particle mass of 700-1,000 GeV and direct annihilation into nu(nu) over bar. The resulting exclusion limits come close to exclusion limits from gamma-ray experiments, that focus on the outer Galactic halo, for high dark matter masses of a few TeV and hard annihilation channels.
  •  
4.
  • Aartsen, M. G., et al. (författare)
  • SEARCHES FOR EXTENDED AND POINT-LIKE NEUTRINO SOURCES WITH FOUR YEARS OF ICECUBE DATA
  • 2014
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 796:2, s. 109-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results on searches for point-like sources of neutrinos using four years of IceCube data, including the first year of data from the completed 86 string detector. The total livetime of the combined data set is 1373 days. For an E-2 spectrum, the observed 90% C. L. flux upper limits are similar to 10(-12) TeV-1 cm(-2) s(-1) for energies between 1 TeV and 1 PeV in the northern sky and similar to 10(-11) TeV-1 cm(-2) s(-1) for energies between 100 TeV and 100 PeV in the southern sky. This represents a 40% improvement compared to previous publications, resulting from both the additional year of data and the introduction of improved reconstructions. In addition, we present the first results from an all-sky search for extended sources of neutrinos. We update the results of searches for neutrino emission from stacked catalogs of sources and test five new catalogs; two of Galactic supernova remnants and three of active galactic nuclei. In all cases, the data are compatible with the background-only hypothesis, and upper limits on the flux of muon neutrinos are reported for the sources considered.
  •  
5.
  • Aartsen, M. G., et al. (författare)
  • Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data
  • 2014
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 113:10, s. 101101-
  • Tidskriftsartikel (refereegranskat)abstract
    • A search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2012 provided the first evidence for a high-energy neutrino flux of extraterrestrial origin. Results from an analysis using the same methods with a third year (2012-2013) of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV-PeV range at the level of 10(-8) GeV cm(-2) s(-1) sr(-1) per flavor and reject a purely atmospheric explanation for the combined three-year data at 5.7 sigma. The data are consistent with expectations for equal fluxes of all three neutrino flavors and with isotropic arrival directions, suggesting either numerous or spatially extended sources. The three-year data set, with a live time of 988 days, contains a total of 37 neutrino candidate events with deposited energies ranging from 30 to 2000 TeV. The 2000-TeV event is the highest-energy neutrino interaction ever observed.
  •  
6.
  • Aartsen, M. G., et al. (författare)
  • Search for non-relativistic magnetic monopoles with IceCube
  • 2014
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 74:7, s. 2938-
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the Grand Unified Theory (GUT) era shortly after the Big Bang. Depending on the underlying gauge group these monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of to . In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow-particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal was observed. For catalysis cross sections of the flux of non-relativistic GUT monopoles is constrained up to a level of at a 90 % confidence level, which is three orders of magnitude below the Parker bound. The limits assume a dominant decay of the proton into a positron and a neutral pion. These results improve the current best experimental limits by one to two orders of magnitude, for a wide range of assumed speeds and catalysis cross sections.
  •  
7.
  • Arndt, D. S., et al. (författare)
  • STATE OF THE CLIMATE IN 2017
  • 2018
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 99:8, s. S1-S310
  • Forskningsöversikt (refereegranskat)
  •  
8.
  • Aartsen, M. G., et al. (författare)
  • Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 59-string configuration
  • 2014
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 89:6, s. 062007-
  • Tidskriftsartikel (refereegranskat)abstract
    • A search for high-energy neutrinos was performed using data collected by the IceCube Neutrino Observatory from May 2009 to May 2010, when the array was running in its 59-string configuration. The data sample was optimized to contain muon neutrino induced events with a background contamination of atmospheric muons of less than 1%. These data, which are dominated by atmospheric neutrinos, are analyzed with a global likelihood fit to search for possible contributions of prompt atmospheric and astrophysical neutrinos, neither of which have yet been identified. Such signals are expected to follow a harder energy spectrum than conventional atmospheric neutrinos. In addition, the zenith angle distribution differs for astrophysical and atmospheric signals. A global fit of the reconstructed energies and directions of observed events is performed, including possible neutrino flux contributions for an astrophysical signal and atmospheric backgrounds as well as systematic uncertainties of the experiment and theoretical predictions. The best fit yields an astrophysical signal flux for nu(mu) + (nu) over bar (mu) of E-2. Phi(E) = 0.25 x 10(-8) GeV cm(-2) s(-1) sr(-1), and a zero prompt component. Although the sensitivity of this analysis for astrophysical neutrinos surpasses the Waxman and Bahcall upper bound, the experimental limit at 90% confidence level is a factor of 1.5 above at a flux of E-2 . Phi(E) = 1.44 x 10(-8) GeV cm(-2) s(-1) sr(-1).
  •  
9.
  • Aartsen, M. G., et al. (författare)
  • Search for neutrino-induced particle showers with IceCube-40
  • 2014
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 89:10, s. 102001-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the search for neutrino-induced particle showers, so-called cascades, in the IceCube-40 detector. The data for this search were collected between April 2008 and May 2009 when the first 40 IceCube strings were deployed and operational. Three complementary searches were performed, each optimized for different energy regimes. The analysis with the lowest energy threshold (2 TeV) targeted atmospheric neutrinos. A total of 67 events were found, consistent with the expectation of 41 atmospheric muons and 30 atmospheric neutrino events. The two other analyses targeted a harder, astrophysical neutrino flux. The analysis with an intermediate threshold of 25 TeV leads to the observation of 14 cascadelike events, again consistent with the prediction of 3.0 atmospheric neutrino and 7.7 atmospheric muon events. We hence set an upper limit of E-2 Phi(lim) <= 7.46 x 10(-8) GeV sr(-1) s(-1) cm(-2) (90% C.L.) on the diffuse flux from astrophysical neutrinos of all neutrino flavors, applicable to the energy range 25 TeV to 5 PeV, assuming an E-nu(-2) spectrum and a neutrino flavor ratio of 1: 1: 1 at the Earth. The third analysis utilized a larger and optimized sample of atmospheric muon background simulation, leading to a higher energy threshold of 100 TeV. Three events were found over a background prediction of 0.04 atmospheric muon events and 0.21 events from the flux of conventional and prompt atmospheric neutrinos. Including systematic errors this corresponds to a 2.7 sigma excess with respect to the background-only hypothesis. Our observation of neutrino event candidates above 100 TeV complements IceCube's recently observed evidence for high-energy astrophysical neutrinos.
  •  
10.
  • Aartsen, M. G., et al. (författare)
  • Energy reconstruction methods in the IceCube neutrino telescope
  • 2014
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 9, s. P03009-
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate measurement of neutrino energies is essential to many of the scientific goals of large-volume neutrino telescopes. The fundamental observable in such detectors is the Cherenkov light produced by the transit through a medium of charged particles created in neutrino interactions. The amount of light emitted is proportional to the deposited energy, which is approximately equal to the neutrino energy for v(e) and v(mu) charged-current interactions and can be used to set a lower bound on neutrino energies and to measure neutrino spectra statistically in other channels. Here we describe methods and performance of reconstructing charged-particle energies and topologies from the observed Cherenkov light yield, including techniques to measure the energies of uncontained muon tracks, achieving average uncertainties in electromagnetic-equivalent deposited energy of similar to 15% above 10 TeV.
  •  
11.
  • Aartsen, M. G., et al. (författare)
  • IceCube search for dark matter annihilation in nearby galaxies and galaxy clusters
  • 2013
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 88:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of a first search for self-annihilating dark matter in nearby galaxies and galaxy clusters using a sample of high-energy neutrinos acquired in 339.8 days of live time during 2009/10 with the IceCube neutrino observatory in its 59-string configuration. The targets of interest include the Virgo and Coma galaxy clusters, the Andromeda galaxy, and several dwarf galaxies. We obtain upper limits on the cross section as a function of the weakly interacting massive particle mass between 300 GeV and 100 TeV for the annihilation into b (b) over bar, W+(W) over bar (-), tau(+)tau(-), mu(+)mu(-) , and nu(nu) over bar. A limit derived for the Virgo cluster, when assuming a large effect from subhalos, challenges the weakly interacting massive particle interpretation of a recently observed GeV positron excess in cosmic rays.
  •  
12.
  • Aartsen, M. G., et al. (författare)
  • Improvement in fast particle track reconstruction with robust statistics
  • 2014
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 736, s. 143-149
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube project has transformed 1 km(3) of deep natural Antarctic ice into a Cherenkov detector Muon neutrinos are detected and their direction is inferred by mapping the light produced by the secondary muon track inside the volume instrumented with photomultipliers. Reconstructing the muon track from the observed light is challenging due to noise, light scattering in the ice medium, and the possibility of simultaneously having multiple muons inside the detector, resulting from the large flux of cosmic ray muons. This paper describes work on two problems: (1) the truck reconstruction problem, in which, given a set of observations, the goal is to recover the track of a muon; and (2) the coincident event problem, which is to determine how many muons are active in the detector during a time window. Rather than solving these problems by developing more complex physical models that are applied at later stages of the analysis, our approach is to augment the detector's early reconstruction with data filters and robust statistical techniques. These can be implemented at the level of on-line reconstruction and, therefore, improve all subsequent reconstructions. Using the metric of median angular resolution, a standard metric for track reconstruction, we improve the accuracy in the initial reconstruction direction by 13%. We also present improvements in measuring the number of muons in coincident events: we can accurately determine the number of muons 98% of the time.
  •  
13.
  • Aartsen, M. G., et al. (författare)
  • Probing the origin of cosmic rays with extremely high energy neutrinos using the IceCube Observatory
  • 2013
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 88:11
  • Tidskriftsartikel (refereegranskat)abstract
    • We have searched for extremely high energy neutrinos using data taken with the IceCube detector between May 2010 and May 2012. Two neutrino-induced particle shower events with energies around 1 PeV were observed, as reported previously. In this work, we investigate whether these events could originate from cosmogenic neutrinos produced in the interactions of ultrahigh energy cosmic rays with ambient photons while propagating through intergalactic space. Exploiting IceCube's large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out the corresponding models at more than 90% confidence level. The model-independent quasidifferential 90% C. L. upper limit, which amounts to E-2 phi(nu e)+(nu mu)+(nu tau) = 1.2 x 10(-7) GeV cm(-2) s(-1) sr(-1) at 1 EeV, provides the most stringent constraint in the energy range from 10 PeV to 10 EeV. Our observation disfavors strong cosmological evolution of the highest energy cosmic-ray sources such as the Fanaroff-Riley type II class of radio galaxies.
  •  
14.
  • Aartsen, M. G., et al. (författare)
  • SEARCH FOR TIME-INDEPENDENT NEUTRINO EMISSION FROM ASTROPHYSICAL SOURCES WITH 3 yr OF IceCube DATASearch for time-independent neutrino emission from astrophysical sources with 3 yr of icecube data
  • 2013
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 779:2, s. 132-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of a search for neutrino point sources using the IceCube data collected between 2008 April and 2011 May with three partially completed configurations of the detector: the 40-, 59-, and 79-string configurations. The live-time of this data set is 1040 days. An unbinned maximum likelihood ratio test was used to search for an excess of neutrinos above the atmospheric background at any given direction in the sky. By adding two more years of data with improved event selection and reconstruction techniques, the sensitivity was improved by a factor of 3.5 or more with respect to the previously published results obtained with the 40-string configuration of IceCube. We performed an all-sky survey and a dedicated search using a catalog of a priori selected objects observed by other telescopes. In both searches, the data are compatible with the background-only hypothesis. In the absence of evidence for a signal, we set upper limits on the flux of muon neutrinos. For an E-2 neutrino spectrum, the observed limits are (0.9-5) x 10(-12) TeV-1 cm(-2) s(-1) for energies between 1 TeV and 1 PeV in the northern sky and (0.9-23.2) x 10(-12) TeV-1 cm(-2) s(-1) for energies between 10(2) TeV and 10(2) PeV in the southern sky. We also report upper limits for neutrino emission from groups of sources that were selected according to theoretical models or observational parameters and analyzed with a stacking approach. Some of the limits presented already reach the level necessary to quantitatively test current models of neutrino emission.
  •  
15.
  • Aartsen, M. G., et al. (författare)
  • The IceProd framework : Distributed data processing for the IceCube neutrino observatory
  • 2015
  • Ingår i: Journal of Parallel and Distributed Computing. - : Elsevier BV. - 0743-7315 .- 1096-0848. ; 75, s. 198-211
  • Tidskriftsartikel (refereegranskat)abstract
    • IceCube is a one-gigaton instrument located at the geographic South Pole, designed to detect cosmic neutrinos, identify the particle nature of dark matter, and study high-energy neutrinos themselves. Simulation of the IceCube detector and processing of data require a significant amount of computational resources. This paper presents the first detailed description of IceProd, a lightweight distributed management system designed to meet these requirements. It is driven by a central database in order to manage mass production of simulations and analysis of data produced by the IceCube detector. IceProd runs as a separate layer on top of other middleware and can take advantage of a variety of computing resources, including grids and batch systems such as CREAM, HTCondor, and PBS. This is accomplished by a set of dedicated daemons that process job submission in a coordinated fashion through the use of middleware plugins that serve to abstract the details of job submission and job management from the framework. (C) 2014 Elsevier Inc. All rights reserved.
  •  
16.
  • Arndt, D. S., et al. (författare)
  • State of the Climate in 2016
  • 2017
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 98:8, s. S1-S280
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2016, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-continued to increase and reach new record highs. The 3.5 +/- 0.1 ppm rise in global annual mean carbon dioxide from 2015 to 2016 was the largest annual increase observed in the 58-year measurement record. The annual global average carbon dioxide concentration at Earth's surface surpassed 400 ppm (402.9 +/- 0.1 ppm) for the first time in the modern atmospheric measurement record and in ice core records dating back as far as 800000 years. One of the strongest El Nino events since at least 1950 dissipated in spring, and a weak La Nina evolved later in the year. Owing at least in part to the combination of El Nino conditions early in the year and a long-term upward trend, Earth's surface observed record warmth for a third consecutive year, albeit by a much slimmer margin than by which that record was set in 2015. Above Earth's surface, the annual lower troposphere temperature was record high according to all datasets analyzed, while the lower stratospheric temperature was record low according to most of the in situ and satellite datasets. Several countries, including Mexico and India, reported record high annual temperatures while many others observed near-record highs. A week-long heat wave at the end of April over the northern and eastern Indian peninsula, with temperatures surpassing 44 degrees C, contributed to a water crisis for 330 million people and to 300 fatalities. In the Arctic the 2016 land surface temperature was 2.0 degrees C above the 1981-2010 average, breaking the previous record of 2007, 2011, and 2015 by 0.8 degrees C, representing a 3.5 degrees C increase since the record began in 1900. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 24 March, the sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, tying with 2015 at 7.2% below the 1981-2010 average. The September 2016 Arctic sea ice minimum extent tied with 2007 for the second lowest value on record, 33% lower than the 1981-2010 average. Arctic sea ice cover remains relatively young and thin, making it vulnerable to continued extensive melt. The mass of the Greenland Ice Sheet, which has the capacity to contribute similar to 7 m to sea level rise, reached a record low value. The onset of its surface melt was the second earliest, after 2012, in the 37-year satellite record. Sea surface temperature was record high at the global scale, surpassing the previous record of 2015 by about 0.01 degrees C. The global sea surface temperature trend for the 21st century-to-date of +0.162 degrees C decade(-1) is much higher than the longer term 1950-2016 trend of +0.100 degrees C decade(-1). Global annual mean sea level also reached a new record high, marking the sixth consecutive year of increase. Global annual ocean heat content saw a slight drop compared to the record high in 2015. Alpine glacier retreat continued around the globe, and preliminary data indicate that 2016 is the 37th consecutive year of negative annual mass balance. Across the Northern Hemisphere, snow cover for each month from February to June was among its four least extensive in the 47-year satellite record. Continuing a pattern below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska and at the Canadian observatory on northernmost Ellesmere Island. In the Antarctic, record low monthly surface pressures were broken at many stations, with the southern annular mode setting record high index values in March and June. Monthly high surface pressure records for August and November were set at several stations. During this period, record low daily and monthly sea ice extents were observed, with the November mean sea ice extent more than 5 standard deviations below the 1981-2010 average. These record low sea ice values contrast sharply with the record high values observed during 2012-14. Over the region, springtime Antarctic stratospheric ozone depletion was less severe relative to the 1991-2006 average, but ozone levels were still low compared to pre-1990 levels. Closer to the equator, 93 named tropical storms were observed during 2016, above the 1981-2010 average of 82, but fewer than the 101 storms recorded in 2015. Three basins-the North Atlantic, and eastern and western North Pacific-experienced above-normal activity in 2016. The Australian basin recorded its least active season since the beginning of the satellite era in 1970. Overall, four tropical cyclones reached the Saffir-Simpson category 5 intensity level. The strong El Nino at the beginning of the year that transitioned to a weak La Nina contributed to enhanced precipitation variability around the world. Wet conditions were observed throughout the year across southern South America, causing repeated heavy flooding in Argentina, Paraguay, and Uruguay. Wetter-than-usual conditions were also observed for eastern Europe and central Asia, alleviating the drought conditions of 2014 and 2015 in southern Russia. In the United States, California had its first wetter-than-average year since 2012, after being plagued by drought for several years. Even so, the area covered by drought in 2016 at the global scale was among the largest in the post-1950 record. For each month, at least 12% of land surfaces experienced severe drought conditions or worse, the longest such stretch in the record. In northeastern Brazil, drought conditions were observed for the fifth consecutive year, making this the longest drought on record in the region. Dry conditions were also observed in western Bolivia and Peru; it was Bolivia's worst drought in the past 25 years. In May, with abnormally warm and dry conditions already prevailing over western Canada for about a year, the human-induced Fort McMurray wildfire burned nearly 590000 hectares and became the costliest disaster in Canadian history, with $3 billion (U.S. dollars) in insured losses.
  •  
17.
  •  
18.
  • Ade, P. A. R., et al. (författare)
  • Planck 2015 results XXV. Diffuse low-frequency Galactic foregrounds
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 594
  • Tidskriftsartikel (refereegranskat)abstract
    • We discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude H alpha emission with our free-free map shows residuals that correlate with dust optical depth, consistent with a fraction (approximate to 30%) of H alpha having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in I-v) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H Pi regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5-20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is associated with distinct large-scale loops and spurs, and we re-discuss their structure. We argue that nearly all the emission at 40 degrees > l > -90 degrees is part of the Loop I structure, and show that the emission extends much further in to the southern Galactic hemisphere than previously recognised, giving Loop I an ovoid rather than circular outline. However, it does not continue as far as the Fermi bubble/microwave haze, making it less probable that these are part of the same structure. We identify a number of new faint features in the polarized sky, including a dearth of polarized synchrotron emission directly correlated with a narrow, roughly 20 degrees long filament seen in H alpha at high Galactic latitude. Finally, we look for evidence of polarized AME, however many AME regions are significantly contaminated by polarized synchrotron emission, and we find a 2 sigma upper limit of 1.6% in the Perseus region.
  •  
19.
  • Adam, R., et al. (författare)
  • Planck 2015 results X. Diffuse component separation : Foreground maps
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 594
  • Tidskriftsartikel (refereegranskat)abstract
    • Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps and the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7: 5 and 1 degrees. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4pK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100-353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.
  •  
20.
  • Ade, P. A. R., et al. (författare)
  • Planck 2015 results XX. Constraints on inflation
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 594
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey, which includes more than twice the integration time of the nominal survey used for the 2013 release papers. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the spectral index of curvature perturbations to be n(s) = 0.968 +/- 0.006 and tightly constrain its scale dependence to dn(s)/dln k = -0.003 +/- 0.007 when combined with the Planck lensing likelihood. When the Planck high-l polarization data are included, the results are consistent and uncertainties are further reduced. The upper bound on the tensor-to-scalar ratio is r(0).(002) < 0.11 (95% CL). This upper limit is consistent with the B-mode polarization constraint r < 0.12 (95% CL) obtained from a joint analysis of the BICEP2/Keck Array and Planck data. These results imply that V(phi) proportional to phi(2) and natural inflation are now disfavoured compared to models predicting a smaller tensor-to-scalar ratio, such as R-2 inflation. We search for several physically motivated deviations from a simple power-law spectrum of curvature perturbations, including those motivated by a reconstruction of the inflaton potential not relying on the slow-roll approximation. We find that such models are not preferred, either according to a Bayesian model comparison or according to a frequentist simulation-based analysis. Three independent methods reconstructing the primordial power spectrum consistently recover a featureless and smooth P-R (k) over the range of scales 0.008 Mpc(-1) less than or similar to k less than or similar to 0.1 Mpc(-1). At large scales, each method finds deviations from a power law, connected to a deficit at multipoles l approximate to 20-40 in the temperature power spectrum, but at an uncompelling statistical significance owing to the large cosmic variance present at these multipoles. By combining power spectrum and non-Gaussianity bounds, we constrain models with generalized Lagrangians, including Galileon models and axion monodromy models. The Planck data are consistent with adiabatic primordial perturbations, and the estimated values for the parameters of the base Lambda cold dark matter (Lambda CDM) model are not significantly altered when more general initial conditions are admitted. In correlated mixed adiabatic and isocurvature models, the 95% CL upper bound for the non-adiabatic contribution to the observed CMB temperature variance is vertical bar alpha(non-adi)vertical bar < 1.9%, 4.0%, and 2.9% for CDM, neutrino density, and neutrino velocity isocurvature modes, respectively. We have tested inflationary models producing an anisotropic modulation of the primordial curvature power spectrum finding that the dipolar modulation in the CMB temperature field induced by a CDM isocurvature perturbation is not preferred at a statistically significant level. We also establish tight constraints on a possible quadrupolar modulation of the curvature perturbation. These results are consistent with the Planck 2013 analysis based on the nominal mission data and further constrain slow-roll single-field inflationary models, as expected from the increased precision of Planck data using the full set of observations.
  •  
21.
  • Ade, P. A. R., et al. (författare)
  • Planck 2015 results XXVI. The Second Planck Catalogue of Compact Sources
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 594
  • Tidskriftsartikel (refereegranskat)abstract
    • The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogues, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalogue. The second ( PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow us to increase the number of objects in the catalogue, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).
  •  
22.
  • Ade, P. A. R., et al. (författare)
  • XXIV. Cosmology from Sunyaev-Zeldovich cluster counts
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 594
  • Tidskriftsartikel (refereegranskat)abstract
    • We present cluster counts and corresponding cosmological constraints from the Planck full mission data set. Our catalogue consists of 439 clusters detected via their Sunyaev-Zeldovich (SZ) signal down to a signal-to-noise ratio of 6, and is more than a factor of 2 larger than the 2013 Planck cluster cosmology sample. The counts are consistent with those from 2013 and yield compatible constraints under the same modelling assumptions. Taking advantage of the larger catalogue, we extend our analysis to the two-dimensional distribution in redshift and signal-to-noise. We use mass estimates from two recent studies of gravitational lensing of background galaxies by Planck clusters to provide priors on the hydrostatic bias parameter, (1 - b). In addition, we use lensing of cosmic microwave background (CMB) temperature fluctuations by Planck clusters as an independent constraint on this parameter. These various calibrations imply constraints on the present-day amplitude of matter fluctuations in varying degrees of tension with those from the Planck analysis of primary fluctuations in the CMB; for the lowest estimated values of (1 b) the tension is mild, only a little over one standard deviation, while it remains substantial (3.7 sigma) for the largest estimated value. We also examine constraints on extensions to the base flat Lambda CDM model by combining the cluster and CMB constraints. The combination appears to favour non-minimal neutrino masses, but this possibility does little to relieve the overall tension because it simultaneously lowers the implied value of the Hubble parameter, thereby exacerbating the discrepancy with most current astrophysical estimates. Improving the precision of cluster mass calibrations from the current 10%-level to 1% would significantly strengthen these combined analyses and provide a stringent test of the base Lambda CDM model.
  •  
23.
  • Aghanim, N., et al. (författare)
  • Planck 2015 results XI. CMB power spectra, likelihoods, and robustness of parameters
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 594
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlation functions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties, both instrumental and astrophysical in nature. They are based on the same hybrid approach used for the previous release, i.e., a pixel-based likelihood at low multipoles (l < 30) and a Gaussian approximation to the distribution of cross-power spectra at higher multipoles. The main improvements are the use of more and better processed data and of Planck polarization information, along with more detailed models of foregrounds and instrumental uncertainties. The increased redundancy brought by more than doubling the amount of data analysed enables further consistency checks and enhanced immunity to systematic effects. It also improves the constraining power of Planck, in particular with regard to small-scale foreground properties. Progress in the modelling of foreground emission enables the retention of a larger fraction of the sky to determine the properties of the CMB, which also contributes to the enhanced precision of the spectra. Improvements in data processing and instrumental modelling further reduce uncertainties. Extensive tests establish the robustness and accuracy of the likelihood results, from temperature alone, from polarization alone, and from their combination. For temperature, we also perform a full likelihood analysis of realistic end-to-end simulations of the instrumental response to the sky, which were fed into the actual data processing pipeline; this does not reveal biases from residual low-level instrumental systematics. Even with the increase in precision and robustness, the Lambda CDM cosmological model continues to offer a very good fit to the Planck data. The slope of the primordial scalar fluctuations, n(s), is confirmed smaller than unity at more than 5 sigma from Planck alone. We further validate the robustness of the likelihood results against specific extensions to the baseline cosmology, which are particularly sensitive to data at high multipoles. For instance, the effective number of neutrino species remains compatible with the canonical value of 3.046. For this first detailed analysis of Planck polarization spectra, we concentrate at high multipoles on the E modes, leaving the analysis of the weaker B modes to future work. At low multipoles we use temperature maps at all Planck frequencies along with a subset of polarization data. These data take advantage of Planck's wide frequency coverage to improve the separation of CMB and foreground emission. Within the baseline Lambda CDM cosmology this requires tau = 0.078 +/- 0.019 for the reionization optical depth, which is significantly lower than estimates without the use of high-frequency data for explicit monitoring of dust emission. At high multipoles we detect residual systematic errors in E polarization, typically at the mu K-2 level; we therefore choose to retain temperature information alone for high multipoles as the recommended baseline, in particular for testing non-minimal models. Nevertheless, the high-multipole polarization spectra from Planck are already good enough to enable a separate high-precision determination of the parameters of the Lambda CDM model, showing consistency with those established independently from temperature information alone.
  •  
24.
  • Adam, R., et al. (författare)
  • Planck 2015 results IX. Diffuse component separation : CMB maps
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 594
  • Tidskriftsartikel (refereegranskat)abstract
    • We present foreground-reduced cosmic microwave background (CMB) maps derived from the full Planck data set in both temperature and polarization. Compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.2 for frequencies between 30 and 70 GHz, and by 1.9 for frequencies between 100 and 857 GHz. In addition, systematic errors in the forms of temperature-topolarization leakage, analogue-to-digital conversion uncertainties, and very long time constant errors have been dramatically reduced, to the extent that the cosmological polarization signal may now be robustly recovered on angular scales l greater than or similar to 40. On the very largest scales, instrumental systematic residuals are still non-negligible compared to the expected cosmological signal, and modes with l < 20 are accordingly suppressed in the current polarization maps by high-pass filtering. As in 2013, four different CMB component separation algorithms are applied to these observations, providing a measure of stability with respect to algorithmic and modelling choices. The resulting polarization maps have rms instrumental noise ranging between 0.21 and 0.27 mu K averaged over 55' pixels, and between 4.5 and 6.1 mu K averaged over 3.'4 pixels. The cosmological parameters derived from the analysis of temperature power spectra are in agreement at the 1 sigma level with the Planck 2015 likelihood. Unresolved mismatches between the noise properties of the data and simulations prevent a satisfactory description of the higher-order statistical properties of the polarization maps. Thus, the primary applications of these polarization maps are those that do not require massive simulations for accurate estimation of uncertainties, for instance estimation of cross-spectra and cross-correlations, or stacking analyses. However, the amplitude of primordial non-Gaussianity is consistent with zero within 2 sigma for all local, equilateral, and orthogonal configurations of the bispectrum, including for polarization E-modes. Moreover, excellent agreement is found regarding the lensing B-mode power spectrum, both internally among the various component separation codes and with the best-fit Planck 2015 Lambda cold dark matter model.
  •  
25.
  • Ade, P. A. R., et al. (författare)
  • Planck 2015 results XIX. Constraints on primordial magnetic fields
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 594
  • Tidskriftsartikel (refereegranskat)abstract
    • We compute and investigate four types of imprint of a stochastic background of primordial magnetic fields (PMFs) on the cosmic microwave background (CMB) anisotropies: the impact of PMFs on the CMB temperature and polarization spectra, which is related to their contribution to cosmological perturbations; the effect on CMB polarization induced by Faraday rotation; the impact of PMFs on the ionization history; magnetically-induced non-Gaussianities and related non-zero bispectra; and the magnetically-induced breaking of statistical isotropy. We present constraints on the amplitude of PMFs that are derived from different Planck data products, depending on the specific effect that is being analysed. Overall, Planck data constrain the amplitude of PMFs to less than a few nanoGauss, with different bounds that depend on the considered model. In particular, individual limits coming from the analysis of the CMB angular power spectra, using the Planck likelihood, are B-1 (Mpc) < 4.4 nG (where B1 Mpc is the comoving field amplitude at a scale of 1 Mpc) at 95% confidence level, assuming zero helicity. By considering the Planck likelihood, based only on parity-even angular power spectra, we obtain B-1 (Mpc) < 5.6 nG for a maximally helical field. For nearly scale-invariant PMFs we obtain B-1 (Mpc) < 2.0 nG and B-1 (Mpc) < 0.9 nG if the impact of PMFs on the ionization history of the Universe is included in the analysis. From the analysis of magnetically-induced non-Gaussianity, we obtain three different values, corresponding to three applied methods, all below 5 nG. The constraint from the magnetically-induced passive-tensor bispectrum is B-1 (Mpc) < 2.8 nG. A search for preferred directions in the magnetically-induced passive bispectrum yields B-1 (Mpc) < 4.5 nG, whereas the compensated-scalar bispectrum gives B-1 (Mpc) < 3 nG. The analysis of the Faraday rotation of CMB polarization by PMFs uses the Planck power spectra in EE and BB at 70 GHz and gives B-1 (Mpc) < 1380 nG. In our final analysis, we consider the harmonic-space correlations produced by Alfven waves, finding no significant evidence for the presence of these waves. Together, these results comprise a comprehensive set of constraints on possible PMFs with Planck data.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 132
Typ av publikation
tidskriftsartikel (124)
forskningsöversikt (5)
konferensbidrag (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (127)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Maciás-Pérez, J. F. (50)
Tomasi, M. (45)
Matarrese, S. (44)
Paoletti, D. (44)
Baccigalupi, C. (44)
Banday, A. J. (44)
visa fler...
Bartolo, N. (44)
Bersanelli, M. (44)
Burigana, C. (44)
de Zotti, G. (44)
Diego, J. M. (44)
Keskitalo, R. (44)
Kurki-Suonio, H. (44)
Martinez-Gonzalez, E ... (44)
Piacentini, F. (44)
Remazeilles, M. (44)
Renzi, A. (44)
Scott, D. (44)
Gudmundsson, Jón E. (43)
de Bernardis, P. (43)
Bouchet, F. R. (43)
Calabrese, E. (43)
Delabrouille, J. (43)
Finelli, F. (43)
Aumont, J. (43)
Barreiro, R. B. (43)
Benabed, K. (43)
Bielewicz, P. (43)
Crill, B. P. (43)
Dupac, X. (43)
Galeotta, S. (43)
Gonzalez-Nuevo, J. (43)
Gruppuso, A. (43)
Herranz, D. (43)
Kunz, M. (43)
Lasenby, A. (43)
Lattanzi, M. (43)
Levrier, F. (43)
Lilje, P. B. (43)
Lopez-Caniego, M. (43)
Migliaccio, M. (43)
Montier, L. (43)
Morgante, G. (43)
Natoli, P. (43)
Polenta, G. (43)
Rachen, J. P. (43)
Reinecke, M. (43)
Savelainen, M. (43)
Tauber, J. A. (43)
Valiviita, J. (43)
visa färre...
Lärosäte
Stockholms universitet (64)
Uppsala universitet (28)
Karolinska Institutet (22)
Göteborgs universitet (15)
Linköpings universitet (15)
Lunds universitet (12)
visa fler...
Sveriges Lantbruksuniversitet (11)
Umeå universitet (8)
Chalmers tekniska högskola (5)
Kungliga Tekniska Högskolan (3)
Jönköping University (1)
Handelshögskolan i Stockholm (1)
visa färre...
Språk
Engelska (132)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (81)
Medicin och hälsovetenskap (18)
Lantbruksvetenskap (10)
Teknik (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy