SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mace Gregory) "

Sökning: WFRF:(Mace Gregory)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mann, Andrew W., et al. (författare)
  • Zodiacal Exoplanets In Time (Zeit). III. A Short-Period Planet Orbiting A Pre-Main-Sequence Star In The Upper Scorpius Ob Association
  • 2016
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 152:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We confirm and characterize a close-in (P-orb = 5.425 days), super-Neptune sized (5.04(-0.37)(+0.34) R-circle plus) planet transiting K2-33 (2MASS J16101473-1919095), a late-type (M3) pre-main-sequence (11 Myr old) star in the Upper Scorpius subgroup of the Scorpius-Centaurus OB association. The host star has the kinematics of a member of the Upper Scorpius OB association, and its spectrum contains lithium absorption, an unambiguous sign of youth (<20 Myr) in late-type dwarfs. We combine photometry from K2 and the ground-based MEarth project to refine the planet's properties and constrain the host star's density. We determine K2-33's bolometric flux and effective temperature from moderate-resolution spectra. By utilizing isochrones that include the effects of magnetic fields, we derive a precise radius (6%-7%) and mass (16%) for the host star, and a stellar age consistent with the established value for Upper Scorpius. Follow-up high-resolution imaging and Doppler spectroscopy confirm that the transiting object is not a stellar companion or a background eclipsing binary blended with the target. The shape of the transit, the constancy of the transit depth and periodicity over 1.5 yr, and the independence with wavelength rule out stellar variability or a dust cloud or debris disk partially occulting the star as the source of the signal; we conclude that it must instead be planetary in origin. The existence of K2-33b suggests that close-in planets can form in situ or migrate within similar to 10 Myr, e.g., via interactions with a disk, and that long-timescale dynamical migration such as by Lidov-Kozai or planet-planet scattering is not responsible for all short-period planets.
  •  
2.
  • Sneden, Christopher, et al. (författare)
  • Chemical Compositions of Red Giant Stars from Habitable Zone Planet Finder Spectroscopy
  • 2021
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 161:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We have used the Habitable Zone Planet Finder (HPF) to gather high-resolution, high signal-to-noise near-infrared spectra of 13 field red horizontal branch (RHB) stars, one open cluster giant, and one very metal-poor halo red giant. The HPF spectra cover the 0.81-1.28 mu m wavelength range of the zyJ bands, partially filling the gap between the optical (0.4-1.0 mu m) and infrared (1.5-2.4 mu m) spectra already available for the program stars. We derive abundances of 17 species from LTE-based computations involving equivalent widths and spectrum syntheses, and estimate abundance corrections for the species that are most affected by departures from LTE in RHB stars. Generally good agreement is found between HPF-based metallicities and abundance ratios and those from the optical and infrared spectral regions. Light element transitions dominate the HPF spectra of these red giants, and HPF data can be used to derive abundances from species with poor or no representation in optical spectra (e.g., C i, P i, S i, K i). Attention is drawn to the HPF abundances in two field solar-metallicity RHB stars of special interest: one with an extreme carbon isotope ratio, and one with a rare, very large lithium content. The latter star is unique in our sample in exhibiting very strong He i 10830 A absorption. The abundances of the open cluster giant concur with those derived from other wavelength regions. Detections of C i and S i in HD 122563 are reported, yielding the lowest metallicity determination of [S/Fe] from more than one multiplet.
  •  
3.
  • Gaidos, E., et al. (författare)
  • Zodiacal exoplanets in time (ZEIT) - II. A 'super-Earth' orbiting a young K dwarf in the Pleiades Neighbourhood
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 464:1, s. 850-862
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe a 'super-Earth'-size (2.30 +/- 0.16 R-circle plus)planet transiting an early K-type dwarf star in the Campaign 4 field observed by the K2 mission. The host star, EPIC 210363145, was identified as a candidate member of the approximately 120 Myr-old Pleiades cluster based on its kinematics and photometric distance. It is rotationally variable and exhibits near-ultraviolet emission consistent with a Pleiades age, but its rotational period is approximate to 20 d and its spectrum contains no H alpha emission nor the Li I absorption expected of Pleiades K dwarfs. Instead, the star is probably an interloper that is unaffiliated with the cluster, but younger (less than or similar to 1.3 Gyr) than the typical field dwarf. We ruled out a false positive transit signal produced by confusion with a background eclipsing binary by adaptive optics imaging and a statistical calculation. Doppler radial velocity measurements limit the companion mass to <2 times that of Jupiter. Screening of the light curves of 1014 potential Pleiades candidate stars uncovered no additional planets. An injection-and-recovery experiment using the K2 Pleiades light curves with simulated planets, assuming a planet population like that in the Kepler prime field, predicts only 0.8-1.8 detections (versus similar to 20 in an equivalent Kepler sample). The absence of Pleiades planet detections can be attributed to the much shorter monitoring time of K2 (80 d versus 4 yr), increased measurement noise due to spacecraft motion, and the intrinsic noisiness of the stars.
  •  
4.
  • Nandakumar, Govind, et al. (författare)
  • Composition of Giants 1° North of the Galactic Center : Detailed Abundance Trends for 21 Elements Observed with IGRINS
  • 2024
  • Ingår i: Astrophysical Journal. - 0004-637X. ; 964:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first high-resolution, detailed abundances of 21 elements for giants in the Galactic bulge/bar within 1° of the Galactic plane, where high extinction has rendered such studies challenging. Our high-signal-to-noise-ratio and high-resolution, near-infrared spectra of seven M giants in the inner bulge, located at (l, b) = (0°, +1°), are observed using the IGRINS spectrograph. We report the first multichemical study of the inner Galactic bulge by investigating, relative to a robust new solar neighborhood sample, the abundance trends of 21 elements, including the relatively difficult to study heavy elements. The elements studied are: F, Mg, Si, S, Ca, Na, Al, K, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, Ce, Nd, and Yb. We investigate bulge membership of all seven stars using distances and orbital simulations, and we find that the most metal-poor star may be a halo interloper. Our investigation also shows that the inner bulge as close as 1° north of the Galactic Center displays a similarity to the inner disk sequence, following the high-[α/Fe] envelope of the solar vicinity metal-rich population, though no firm conclusions for a different enrichment history are evident from this sample. We find a small fraction of metal-poor stars ([Fe/H] > −0.5), but most of our stars are mainly of supersolar metallicity. Fluorine is found to be enhanced at high metallicity compared to the solar neighborhood, but confirmation with a larger sample is required. We will apply this approach to explore the populations of the nuclear stellar disk and the nuclear star cluster.
  •  
5.
  • Orange, Jordan S, et al. (författare)
  • IL-2 induces a WAVE2-dependent pathway for actin reorganization that enables WASp-independent human NK cell function.
  • 2011
  • Ingår i: The Journal of clinical investigation. - 1558-8238. ; 121:4, s. 1535-48
  • Tidskriftsartikel (refereegranskat)abstract
    • Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency associated with an increased susceptibility to herpesvirus infection and hematologic malignancy as well as a deficiency of NK cell function. It is caused by defective WAS protein (WASp). WASp facilitates filamentous actin (F-actin) branching and is required for F-actin accumulation at the NK cell immunological synapse and NK cell cytotoxicity ex vivo. Importantly, the function of WASp-deficient NK cells can be restored in vitro after exposure to IL-2, but the mechanisms underlying this remain unknown. Using a WASp inhibitor as well as cells from patients with WAS, we have defined a direct effect of IL-2 signaling upon F-actin that is independent of WASp function. We found that IL-2 treatment of a patient with WAS enhanced the cytotoxicity of their NK cells and the F-actin content at the immunological synapses formed by their NK cells. IL-2 stimulation of NK cells in vitro activated the WASp homolog WAVE2, which was required for inducing WASp-independent NK cell function, but not for baseline activity. Thus, WAVE2 and WASp define parallel pathways to F-actin reorganization and function in human NK cells; although WAVE2 was not required for NK cell innate function, it was accessible through adaptive immunity via IL-2. These results demonstrate how overlapping cytoskeletal activities can utilize immunologically distinct pathways to achieve synonymous immune function.
  •  
6.
  • Ryde, Nils, et al. (författare)
  • Fluorine in the Solar Neighborhood : The Need for Several Cosmic Sources
  • 2020
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 893:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The cosmic origin of fluorine is still not well constrained. Several nucleosynthetic channels at different phases of stellar evolution have been suggested, but these must be constrained by observations. For this, the fluorine abundance trend with metallicity spanning a wide range is required. Our aim is to determine stellar abundances of fluorine for -1.1 < [Fe H] < +0.4. We determine the abundances from HF lines in infrared K-band spectra ( 2.3 mm) of cool giants, observed with the IGRINS and Phoenix high-resolution spectrographs. We derive accurate stellar parameters for all our observed K giants, which is important as the HF lines are very temperaturesensitive. We find that [F/Fe] is flat as a function of metallicity at [ F/Fe]0, but increases as the metallicity increases. The fluorine slope shows a clear secondary behavior in this metallicity range. We also find that the [F/ Ce] ratio is relatively flat for -0.6 < [Fe H] < 0, and that for two metal-poor ([Fe H] < - 0.8), s-process element-enhanced giants, we do not detect an elevated fluorine abundance. We interpret all of these observational constraints as indications that several major processes are at play for the cosmic budget of fluorine over time: from those in massive stars at low metallicities, through the asymptotic giant branch star contribution at -0.6 < [Fe H] < 0, to processes with increasing yields with metallicity at supersolar metallicities. The origins of the latter, and whether or not Wolf-Rayet stars and/or novae could contribute at supersolar metallicities, is currently not known. To quantify these observational results, theoretical modeling is required. More observations in the metal-poor region are required to clarify the processes there.
  •  
7.
  • Sneden, Christopher, et al. (författare)
  • The Active Chromospheres of Lithium-rich Red Giant Stars
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 940:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We have gathered near-infrared zyJ-band high-resolution spectra of nearly 300 field red giant stars with known lithium abundances in order to survey their He i λ10830 absorption strengths. This transition is an indicator of chromospheric activity and/or mass loss in red giants. The majority of stars in our sample reside in the red clump or red horizontal branch based on their V − J, MV color–magnitude diagram, and Gaia Teff and log(g) values. Most of our target stars are Li-poor in the sense of having normally low Li abundances, defined here as log ò(Li) < 1.25. Over 90% of these Li-poor stars have weak λ10830 features. However, more than half of the 83 Li-rich stars (log ò(Li) > 1.25) have strong λ10830 absorptions. These large λ10830 lines signal excess chromospheric activity in Li-rich stars; there is almost no indication of significant mass loss. The Li-rich giants may also have a higher binary fraction than Li-poor stars, based on their astrometric data. It appears likely that both residence on the horizontal branch and present or past binary interaction play roles in the significant Li–He connection established in this survey.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy